Yuan Changzhou, Zhang Longhai, Hou Linrui, Zhou Lu, Pang Gang, Lian Lin
School of Materials Science & Engineering, Anhui University of Technology, Ma'anshan, 243002 (P. R. China); Chinese Academy of Science (CAS), Key Laboratory of Materials for Energy Conversion, Hefei, 230026 (P. R. China).
Chemistry. 2015 Jan 12;21(3):1262-8. doi: 10.1002/chem.201404624. Epub 2014 Nov 11.
In this work, we put forward a facile yet efficient room-temperature synthetic methodology for the smart fabrication of mesoporous nanocrystalline ZnMn2O4 in macro-quality from the birnessite-type MnO2 phase. A plausible reduction/ion exchange/re-crystallization mechanism is tentatively proposed herein for the scalable synthesis of the spinel phase ZnMn2O4. When utilized as a high-performance anode for advanced Li-ion battery (LIB) application, the as-synthesized nanocrystalline ZnMn2O4 delivered an excellent discharge capacity of approximately 1288 mAh g(-1) on the first cycle at a current density of 400 mA g(-1), and exhibited an outstanding cycling durability, rate capability, and coulombic efficiency, benefiting from its mesoporous and nanoscale structure, which strongly highlighted its great potential in next-generation LIBs. Furthermore, the strategy developed here is very simple and of great importance for large-scale industrial production.
在本工作中,我们提出了一种简便而高效的室温合成方法,用于从水钠锰矿型MnO₂相大规模制备介孔纳米晶ZnMn₂O₄。本文初步提出了一种合理的还原/离子交换/再结晶机制,用于尖晶石相ZnMn₂O₄的可扩展合成。当用作先进锂离子电池(LIB)应用的高性能阳极时,所合成的纳米晶ZnMn₂O₄在400 mA g⁻¹的电流密度下,首次循环时表现出约1288 mAh g⁻¹的优异放电容量,并展现出出色的循环耐久性、倍率性能和库仑效率,这得益于其介孔和纳米级结构,有力地突出了其在下一代LIB中的巨大潜力。此外,这里开发的策略非常简单,对大规模工业生产具有重要意义。