Wang Yuyan, Xu Senyang, Zhang Yamin, Hou Linrui, Yuan Changzhou
School of Materials Science & Engineering, University of Jinan, Jinan 250022, China.
Nanomaterials (Basel). 2023 Jan 27;13(3):512. doi: 10.3390/nano13030512.
Spinel ZnMnO is considered a promising anode material for high-capacity Li-ion batteries due to their higher theoretical capacity than commercial graphite anode. However, the insufficient cycling and rate properties seriously limit its practical application. In this work, porous ZnMnO hollow micro-rods (ZMO HMRs) are synthesized by a facile co-precipitation method coupled with annealing treatment. On the basis of electrochemical analyses, the as-obtained samples are first characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy techniques. The influences of different polyethylene glycol 400 (PEG 400) additions on the formation of the hollow rod structure are also discussed. The abundant multi-level pore structure and hollow feature of ZMO HMRs effectively alleviate the volume expansion issue, rendering abundant electroactive sites and thereby guaranteeing convenient Li diffusion. Thanks to these striking merits, the ZMO HMRs anode exhibits excellent electrochemical lithium storage performance with a reversible specific capacity of 761 mAh g at a current density of 0.1 A g, and a long-cycle specific capacity of 529 mAh g after 1000 cycles at 2.0 A g and keep a remarkable rate capability. In addition, the assembled ZMO HMRs-based full cells deliver an excellent rate capacity, and when the current density returns to 0.05 A g, the specific capacity can still reach 105 mAh g and remains at 101 mAh g after 70 cycles, maintaining a material-level energy density of approximately 273 Wh kg. More significantly, such striking electrochemical performance highlights that porous ZMO HMRs could be a promising anode candidate material for LIBs.
由于尖晶石型ZnMnO的理论容量高于商用石墨负极,因此被认为是一种很有前景的用于高容量锂离子电池的负极材料。然而,其循环性能和倍率性能不足严重限制了其实际应用。在这项工作中,通过简便的共沉淀法结合退火处理合成了多孔ZnMnO空心微棒(ZMO HMRs)。在电化学分析的基础上,首先通过X射线衍射、X射线光电子能谱、透射电子显微镜和扫描电子显微镜技术对所得样品进行了表征。还讨论了不同聚乙二醇400(PEG 400)添加量对空心棒结构形成的影响。ZMO HMRs丰富的多级孔结构和空心特征有效地缓解了体积膨胀问题,提供了丰富的电活性位点,从而保证了锂离子的便捷扩散。得益于这些显著优点,ZMO HMRs负极表现出优异的电化学储锂性能,在0.1 A g的电流密度下可逆比容量为761 mAh g,在2.0 A g下循环1000次后的长循环比容量为529 mAh g,并保持了出色的倍率性能。此外,组装的基于ZMO HMRs的全电池具有优异的倍率容量,当电流密度恢复到0.05 A g时,比容量仍可达到105 mAh g,70次循环后保持在101 mAh g,保持了约273 Wh kg的材料级能量密度。更重要的是,如此出色的电化学性能突出表明多孔ZMO HMRs可能是一种有前景的用于锂离子电池的负极候选材料。