Suppr超能文献

不同癌症患者中QLQ-C30与SF-6D之间通用映射模型的潜力:基于回归方法的比较

The potential for a generally applicable mapping model between QLQ-C30 and SF-6D in patients with different cancers: a comparison of regression-based methods.

作者信息

Kontodimopoulos Nick

机构信息

Faculty of Social Sciences, Hellenic Open University, Bouboulinas 57-59, 26222, Patras, Greece,

出版信息

Qual Life Res. 2015 Jun;24(6):1535-44. doi: 10.1007/s11136-014-0857-7. Epub 2014 Nov 13.

Abstract

PURPOSE

To establish and compare generalized or "global" mapping relationships between QLQ-C30 and SF-6D, applicable across different cancer types.

METHODS

Patients (N = 671) with breast, myeloma, colorectal, lymphoma, bone marrow, prostate, lung and gastroenteric cancer were randomly split into estimation (75%) and validation (25%) datasets. SF-6D was estimated from QLQ-C30 scores via ordinary least squares, generalized linear models and median (least-absolute deviations) regression approaches, and with Bayesian additive regression kernels. Predictive ability was assessed with root mean square error, mean absolute error and proportions of predictions with absolute errors >0.05 and >0.1, whereas explanatory power with adjusted R (2) or equivalent fit measures. Two external samples (breast and colorectal cancer) were used to further test the models.

RESULTS

The QLQ-C30's global health item, the physical, emotional and social functioning scales, and the fatigue, pain and diarrhea symptom scales were significant predictors (p < 0.05 or better) in all models. Negligible deviations in models' performance were observed. All models overpredicted utilities for patients in worst health and underpredicted them for those in better health (p < 0.01 or better). Regarding external validation, performance was better in the colorectal cancer than in the breast cancer sample.

CONCLUSIONS

This study has provided evidence to support the use of "global" mapping models to predict SF-6D utilities from QLQ-C30 in patients with different cancers. Testing with diverse patient samples is required to confirm the generalizability (or not) of mapping models across cancer conditions.

摘要

目的

建立并比较适用于不同癌症类型的QLQ - C30与SF - 6D之间的广义或“全局”映射关系。

方法

将患有乳腺癌、骨髓瘤、结直肠癌、淋巴瘤、骨髓癌、前列腺癌、肺癌和胃肠道癌的患者(N = 671)随机分为估计数据集(75%)和验证数据集(25%)。通过普通最小二乘法、广义线性模型、中位数(最小绝对偏差)回归方法以及贝叶斯加法回归核,从QLQ - C30评分估计SF - 6D。用均方根误差、平均绝对误差以及绝对误差>0.05和>0.1的预测比例评估预测能力,而用调整后的R(2)或等效拟合度量评估解释力。使用两个外部样本(乳腺癌和结直肠癌)进一步测试模型。

结果

在所有模型中,QLQ - C30的总体健康项目、身体、情感和社会功能量表以及疲劳、疼痛和腹泻症状量表均为显著预测因子(p < 0.05或更佳)。观察到模型性能的偏差可忽略不计。所有模型对健康状况最差的患者效用预测过高,对健康状况较好的患者效用预测过低(p < 0.01或更佳)。关于外部验证,结直肠癌样本中的性能优于乳腺癌样本。

结论

本研究提供了证据支持使用“全局”映射模型从不同癌症患者的QLQ - C30预测SF - 6D效用。需要用不同的患者样本进行测试,以确认映射模型在不同癌症情况下的可推广性(或不可推广性)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验