Lee Do-Hun, Luo Xueting, Yungher Benjamin J, Bray Eric, Lee Jae K, Park Kevin K
Miami Project to Cure Paralysis and Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136.
Miami Project to Cure Paralysis and Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136
J Neurosci. 2014 Nov 12;34(46):15347-55. doi: 10.1523/JNEUROSCI.1935-14.2014.
Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.
雷帕霉素哺乳动物靶点(mTOR)作为营养物质和能量的主要传感器,控制蛋白质翻译和细胞生长。在成年中枢神经系统神经元中缺失磷酸酶和张力蛋白同源物(PTEN)以mTOR依赖的方式促进受损轴突的再生。然而,其他人已经证明在不同细胞类型中存在不依赖mTOR的轴突再生,这就提出了一个问题,即mTOR在不同系统中对轴突再生的调节范围有多广。在这里,我们定义了mTOR在促进备用轴突侧支发芽中的作用,这是一种关键的轴突重塑机制,通过该机制中枢神经系统损伤后功能得以恢复。使用药理学抑制,我们证明mTOR对于出生后小鼠锥体切除术后所见的皮质脊髓束轴突的强劲自发发芽是可有可无的。相比之下,在成年幼鼠的不同条件下(即PTEN缺失或硫酸软骨素蛋白聚糖;CSPGs降解)所见的适度自发轴突发芽和诱导发芽在mTOR抑制后均减少。此外,为了进一步确定mTOR在促进发芽反应中的效力,我们同时失活PTEN和CSPGs,并证明与单一处理相比,这种组合导致轴突发芽的累加增加。我们的研究结果揭示了诱导轴突发芽的mTOR依赖性的发育转变,并表明成年神经元中PTEN的缺失既不能重现出生后动物的再生程序,也不足以完全克服抑制环境。因此,通过靶向PTEN结合CSPG降解来利用mTOR水平是促进成年哺乳动物广泛轴突可塑性的一种有前景的策略。