Suppr超能文献

分子信号预测神经调节诱导的皮质脊髓轴突生长状态和肌肉反应可塑性。

Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation.

机构信息

Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY 10031.

Department of Educational Psychology, Graduate Center of the City University of New York, New York, NY 10016.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2408508121. doi: 10.1073/pnas.2408508121. Epub 2024 Nov 13.

Abstract

Electrical motor cortex stimulation can produce corticospinal system plasticity and enhance motor function after injury. We investigate molecular mechanisms of structural and physiological plasticity following electrical neuromodulation, focusing on identifying molecular predictors, or biomarkers, for durable plasticity. We used two neuromodulation protocols, repetitive multipulse stimulation (rMPS) and patterned intermittent theta burst stimulation (iTBS), incorporating different stimulation durations and follow-up periods. We compared neuromodulation efficacy in promoting corticospinal tract (CST) sprouting, motor cortex muscle evoked potential (MEP) LTP-like plasticity, and their associated molecular underpinnings. Only iTBS produced CST sprouting after short-term neuromodulation (1 d of stimulation; 9-d survival for sprouting expression); both iTBS and rMPS produced sprouting with long-term (10-d) neuromodulation. Significant mTOR signaling activation and phosphatase and tensin homolog (PTEN) protein deactivation predicted axon growth across all neuromodulation conditions that produced significant sprouting. Both neuromodulation protocols, regardless of duration, were effective in producing MEP enhancement. However, persistent LTP-like enhancement of MEPs at 30 d was only produced by long-term iTBS. Statistical modeling suggests that Stat3 signaling is the key mediator of MEP enhancement. Cervical spinal cord injury (SCI) alone did not affect baseline molecular signaling. Whereas iTBS and rMPS after SCI produced strong mTOR activation and PTEN deactivation, only iTBS produced Stat3 activation. Our findings support differential molecular biomarkers for neuromodulation-dependent structural and physiological plasticity and show that motor cortex epidural neuromodulation produces molecular changes in neurons that support axonal growth after SCI. iTBS may be more suitable for repair after SCI because it promotes molecular signaling for both CST growth and MEP plasticity.

摘要

电刺激大脑皮层运动区可以产生皮质脊髓系统可塑性,并增强损伤后的运动功能。我们研究了电神经调节后结构和生理可塑性的分子机制,重点是确定持久可塑性的分子预测因子或生物标志物。我们使用了两种神经调节方案,重复多脉冲刺激(rMPS)和模式间歇 theta 爆发刺激(iTBS),结合了不同的刺激持续时间和随访时间。我们比较了神经调节在促进皮质脊髓束(CST)发芽、运动皮层肌肉诱发电位(MEP)类长时程增强可塑性及其相关分子基础方面的效果。只有 iTBS 在短期神经调节后(刺激 1 天;发芽表达的存活 9 天)产生 CST 发芽;iTBS 和 rMPS 均在长期(10 天)神经调节后产生发芽。在所有产生显著发芽的神经调节条件下,只有 mTOR 信号激活和磷酸酶和张力蛋白同源物(PTEN)蛋白失活才能预测轴突生长。两种神经调节方案,无论持续时间如何,都能有效地增强 MEP。然而,只有长期 iTBS 才能产生 30 天 MEP 的持续类长时程增强。统计模型表明,Stat3 信号是 MEP 增强的关键介质。单纯颈脊髓损伤(SCI)本身并不影响基线分子信号。虽然 iTBS 和 rMPS 在 SCI 后均能产生强烈的 mTOR 激活和 PTEN 失活,但只有 iTBS 能产生 Stat3 激活。我们的研究结果支持神经调节依赖性结构和生理可塑性的差异分子生物标志物,并表明运动皮层硬膜外神经调节会在 SCI 后引起神经元的分子变化,从而支持轴突生长。iTBS 可能更适合 SCI 后的修复,因为它促进了 CST 生长和 MEP 可塑性的分子信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验