Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
School of Chemical and Biomedical Engineering, Nanyang Technological University 62 Nanyang Drive, Singapore, 637459.
Sci Rep. 2014 Nov 14;4:7054. doi: 10.1038/srep07054.
A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.
一种简便的、通过控制相来合成α-NiS 纳米粒子(NPs)嵌入碳纳米棒(CRs)的方法被报道,该方法是通过原位硫化预先制备的 Ni/CRs 得到的。碳基质的纳米孔限域对于α-NiS 的形成和防止其向β相转变是至关重要的,这与没有 CRs 限域时自由生长的大团聚β-NiS 颗粒形成了强烈对比。当用作电化学电极时,分散在 CRs 中的超小α-NiS 纳米粒子的混合电化学电荷存储有利于高电容(在 1、2、5、10 A g(-1) 的电流密度下分别为 1092、946、835、740 F g(-1))。而高电化学稳定性(在 2000 次充放电循环后比电容的保留率约为 100%)归因于超级电容器-电池电极,它使电容器(CRs)和电池(NiS NPs)组件的协同效应而不是简单的加和复合材料。这项工作不仅为硫化镍的相控合成提供了一种通用方法,而且为新型镍基/碳混合超级电容器-电池电极材料的合理设计和制造开辟了道路。