Carroll Gemma, Slip David, Jonsen Ian, Harcourt Rob
Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
Taronga Conservation Society Australia, Bradley's Head Road, Mosman, Sydney, NSW 2088, Australia.
J Exp Biol. 2014 Dec 15;217(Pt 24):4295-302. doi: 10.1242/jeb.113076. Epub 2014 Nov 13.
Determining where, when and how much animals eat is fundamental to understanding their ecology. We developed a technique to identify a prey capture signature for little penguins from accelerometry, in order to quantify food intake remotely. We categorised behaviour of captive penguins from HD video and matched this to time-series data from back-mounted accelerometers. We then trained a support vector machine (SVM) to classify the penguins' behaviour at 0.3 s intervals as either 'prey handling' or 'swimming'. We applied this model to accelerometer data collected from foraging wild penguins to identify prey capture events. We compared prey capture and non-prey capture dives to test the model predictions against foraging theory. The SVM had an accuracy of 84.95±0.26% (mean ± s.e.) and a false positive rate of 9.82±0.24% when tested on unseen captive data. For wild data, we defined three independent, consecutive prey handling observations as representing true prey capture, with a false positive rate of 0.09%. Dives with prey captures had longer duration and bottom times, were deeper, had faster ascent rates, and had more 'wiggles' and 'dashes' (proxies for prey encounter used in other studies). The mean (±s.e.) number of prey captures per foraging trip was 446.6±66.28. By recording the behaviour of captive animals on HD video and using a supervised machine learning approach, we show that accelerometry signatures can classify the behaviour of wild animals at unprecedentedly fine scales.
确定动物在何处、何时以及吃多少食物是理解它们生态学的基础。我们开发了一种技术,通过加速度测量来识别小企鹅的猎物捕获特征,以便远程量化食物摄入量。我们根据高清视频对圈养企鹅的行为进行分类,并将其与背装式加速度计的时间序列数据相匹配。然后,我们训练了一个支持向量机(SVM),以0.3秒的间隔将企鹅的行为分类为“处理猎物”或“游泳”。我们将这个模型应用于从野生觅食企鹅收集的加速度计数据,以识别猎物捕获事件。我们比较了猎物捕获潜水和非猎物捕获潜水,以根据觅食理论测试模型预测。在对未见过的圈养数据进行测试时,支持向量机的准确率为84.95±0.26%(平均值±标准误差),误报率为9.82±0.24%。对于野生数据,我们将三个独立的、连续的猎物处理观察定义为代表真正的猎物捕获,误报率为0.09%。有猎物捕获的潜水持续时间和底栖时间更长,更深,上升速度更快,并且有更多的“摆动”和“冲刺”(其他研究中用于表示遇到猎物的指标)。每次觅食行程的平均(±标准误差)猎物捕获数量为446.6±66.28。通过在高清视频上记录圈养动物的行为并使用监督式机器学习方法,我们表明加速度测量特征可以以前所未有的精细尺度对野生动物的行为进行分类。