Li Xinqing, Sindihebura Tanguy Tresor, Zhou Lei, Duarte Carlos M, Costa Daniel P, Hindell Mark A, McMahon Clive, Muelbert Mônica M C, Zhang Xiangliang, Peng Chengbin
College of Information Science and Engineering, Ningbo University, Ningbo, China.
Red Sea Research Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia.
PeerJ Comput Sci. 2021 Aug 3;7:e656. doi: 10.7717/peerj-cs.656. eCollection 2021.
Data prediction and imputation are important parts of marine animal movement trajectory analysis as they can help researchers understand animal movement patterns and address missing data issues. Compared with traditional methods, deep learning methods can usually provide enhanced pattern extraction capabilities, but their applications in marine data analysis are still limited. In this research, we propose a composite deep learning model to improve the accuracy of marine animal trajectory prediction and imputation. The model extracts patterns from the trajectories with an encoder network and reconstructs the trajectories using these patterns with a decoder network. We use attention mechanisms to highlight certain extracted patterns as well for the decoder. We also feed these patterns into a second decoder for prediction and imputation. Therefore, our approach is a coupling of unsupervised learning with the encoder and the first decoder and supervised learning with the encoder and the second decoder. Experimental results demonstrate that our approach can reduce errors by at least 10% on average comparing with other methods.
数据预测和插补是海洋动物运动轨迹分析的重要组成部分,因为它们可以帮助研究人员了解动物的运动模式并解决数据缺失问题。与传统方法相比,深度学习方法通常可以提供更强的模式提取能力,但它们在海洋数据分析中的应用仍然有限。在本研究中,我们提出了一种复合深度学习模型,以提高海洋动物轨迹预测和插补的准确性。该模型使用编码器网络从轨迹中提取模式,并使用解码器网络利用这些模式重建轨迹。我们还使用注意力机制为解码器突出某些提取的模式。我们还将这些模式输入到第二个解码器中进行预测和插补。因此,我们的方法是将无监督学习与编码器和第一个解码器相结合,以及将监督学习与编码器和第二个解码器相结合。实验结果表明,与其他方法相比,我们的方法平均可以将误差降低至少10%。