Cameron Maria K
Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015, USA.
J Chem Phys. 2014 Nov 14;141(18):184113. doi: 10.1063/1.4901131.
We develop computational tools for spectral analysis of stochastic networks representing energy landscapes of atomic and molecular clusters. Physical meaning and some properties of eigenvalues, left and right eigenvectors, and eigencurrents are discussed. We propose an approach to compute a collection of eigenpairs and corresponding eigencurrents describing the most important relaxation processes taking place in the system on its way to the equilibrium. It is suitable for large and complex stochastic networks where pairwise transition rates, given by the Arrhenius law, vary by orders of magnitude. The proposed methodology is applied to the network representing the Lennard-Jones-38 cluster created by Wales's group. Its energy landscape has a double funnel structure with a deep and narrow face-centered cubic funnel and a shallower and wider icosahedral funnel. However, the complete spectrum of the generator matrix of the Lennard-Jones-38 network has no appreciable spectral gap separating the eigenvalue corresponding to the escape from the icosahedral funnel. We provide a detailed description of the escape process from the icosahedral funnel using the eigencurrent and demonstrate a superexponential growth of the corresponding eigenvalue. The proposed spectral approach is compared to the methodology of the Transition Path Theory. Finally, we discuss whether the Lennard-Jones-38 cluster is metastable from the points of view of a mathematician and a chemical physicist, and make a connection with experimental works.
我们开发了用于对表示原子和分子团簇能量景观的随机网络进行光谱分析的计算工具。讨论了特征值、左右特征向量以及特征电流的物理意义和一些性质。我们提出了一种方法来计算一组特征对和相应的特征电流,以描述系统在达到平衡的过程中发生的最重要的弛豫过程。它适用于大型复杂的随机网络,其中由阿仑尼乌斯定律给出的成对跃迁速率在数量级上变化。所提出的方法应用于表示威尔士团队创建的 Lennard-Jones-38 团簇的网络。其能量景观具有双漏斗结构,有一个深且窄的面心立方漏斗和一个浅且宽的二十面体漏斗。然而,Lennard-Jones-38 网络的生成器矩阵的完整谱没有明显的谱隙将对应于从二十面体漏斗逃逸的特征值分开。我们使用特征电流详细描述了从二十面体漏斗的逃逸过程,并证明了相应特征值的超指数增长。将所提出的光谱方法与跃迁路径理论的方法进行了比较。最后,我们从数学家和化学物理学家的角度讨论了 Lennard-Jones-38 团簇是否是亚稳态的,并与实验工作建立了联系。