Suppr超能文献

基于片段的激酶抑制剂发现方法。

Fragment-based approaches to the discovery of kinase inhibitors.

作者信息

Mortenson Paul N, Berdini Valerio, O'Reilly Marc

机构信息

Astex Pharmaceuticals, Cambridge, United Kingdom.

Astex Pharmaceuticals, Cambridge, United Kingdom.

出版信息

Methods Enzymol. 2014;548:69-92. doi: 10.1016/B978-0-12-397918-6.00003-3.

Abstract

Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.

摘要

蛋白激酶是最重要的药物靶点家族之一,激酶活性异常与大量疾病领域相关。尽管使用小分子可显著靶向激酶,但激酶作为药物靶点存在诸多挑战,尤其是要在如此庞大且关系相对紧密的靶点家族中实现选择性。基于片段的药物发现涉及筛选简单的低分子量化合物以针对靶点产生初始命中物。然后通过药物化学将这些命中物优化为更有效的化合物,这通常借助结构生物学来实现。在此,我们将展示一些基于片段方法发现激酶抑制剂的近期实例,详细介绍片段筛选库的构建、片段命中物的鉴定与验证,以及将它们优化为强效且选择性的先导化合物。我们将讨论基于片段方法的优势以及使用此途径相关的一些挑战。最后,我们将介绍一些关键经验教训,这些经验教训既源于我们自身针对激酶进行片段筛选的经验,也源于大量已发表的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验