Suppr超能文献

中性粒细胞明胶酶相关脂质运载蛋白在修订的慢性肾脏病分类中的临床应用

Clinical application of neutrophil gelatinase-associated lipocalin in the revised chronic kidney disease classification.

作者信息

Xiang Daijun, Zhang Hongrui, Bai Jie, Ma Junlong, Li Mianyang, Gao Jimin, Wang Chengbin

机构信息

Department of Clinical Laboratory, Chinese People's Liberation Army General Hospital Beijing 100853, China.

Ningbo Women & Children's Hospital Ningbo 315031, China.

出版信息

Int J Clin Exp Pathol. 2014 Sep 15;7(10):7172-81. eCollection 2014.

Abstract

BACKGROUND

A revised classification of chronic kidney disease (CKD) was proposed by the Kidney Disease: Improving Global Outcomes (KDIGO) in 2012. Neutrophil gelatinase-associated lipocalin (NGAL) was considered as one of the most promising biomarkers in clinical nephrology. The aim of this study was to examine the level of NGAL in patients with different impairment of GFR based on the new classification, and to evaluate whether NGAL in serum or urine was associated with different risk categories in CKD patients.

METHODS

A cross-sectional study was performed in 240 patients with CKD. NGAL, serum cystatin C, β₂-macroglobulin (β₂-MG), urine α₁-macroglobulin (α₁-MG) and albuminuria were tested in patients with various degrees of renal impairment.

RESULTS

Good correlation was found between the NGAL and the cystatin C, β₂-MG and the α₁-MG (r > 0.7). The level of sNGAL in CKD stage 3b was more than that in CKD stage 3a (P = 0.025). The concentration of the NGAL increased progressively with the increasing of risk categories (proposed by the revised CKD classification). The cutoff value of NGAL was calculated from stage 2 to stage 5. ROC analysis showed good AUC (sNGAL > 0.8, uNGAL > 0.7) and high specificity (sNGAL > 87%, uNGAL > 90%) on the cutoff value of NGAL.

CONCLUSION

The results confirm NGAL as a useful biomarker in clinical nephrology which is helpful to diagnosis and evaluate the categories for CKD proposed by the KDIGO.

摘要

背景

2012年改善全球肾脏病预后组织(KDIGO)提出了慢性肾脏病(CKD)的修订分类。中性粒细胞明胶酶相关脂质运载蛋白(NGAL)被认为是临床肾脏病学中最有前景的生物标志物之一。本研究的目的是根据新分类检查不同肾小球滤过率(GFR)受损患者的NGAL水平,并评估血清或尿液中的NGAL是否与CKD患者的不同风险类别相关。

方法

对240例CKD患者进行了一项横断面研究。检测了不同程度肾功能损害患者的NGAL、血清胱抑素C、β₂-微球蛋白(β₂-MG)、尿α₁-微球蛋白(α₁-MG)和蛋白尿。

结果

NGAL与胱抑素C、β₂-MG和α₁-MG之间存在良好的相关性(r>0.7)。CKD 3b期的sNGAL水平高于CKD 3a期(P = 0.025)。随着风险类别(根据修订的CKD分类提出)的增加,NGAL浓度逐渐升高。计算了从2期到5期NGAL的截断值。ROC分析显示,在NGAL截断值时具有良好的曲线下面积(sNGAL>0.8,uNGAL>0.7)和高特异性(sNGAL>87%,uNGAL>90%)。

结论

结果证实NGAL是临床肾脏病学中一种有用的生物标志物,有助于KDIGO提出的CKD的诊断和类别评估。

相似文献

4
5
Serum cystatin C and serum and urine NGAL in the kidney function assessment of patients with MGUS.
Eur J Haematol. 2015 Feb;94(2):162-8. doi: 10.1111/ejh.12413. Epub 2014 Aug 8.
6
Cystatin C and neutrophil gelatinase-associated lipocalin: biomarkers for acute kidney injury after congenital heart surgery.
Swiss Med Wkly. 2013 Jan 17;143:w13744. doi: 10.4414/smw.2013.13744. eCollection 2013.

引用本文的文献

1
Relationships of Thickness of Perirenal Fat with Urinary Levels of MCP-1 and NGAL in Patients with Hypertension.
J Obes Metab Syndr. 2024 Dec 30;33(4):360-366. doi: 10.7570/jomes24002. Epub 2024 Sep 13.
2
A Multimodal Fuzzy Approach in Evaluating Pediatric Chronic Kidney Disease Using Kidney Biomarkers.
Diagnostics (Basel). 2024 Jul 30;14(15):1648. doi: 10.3390/diagnostics14151648.
3
6
7
Increased NGAL level associated with iron store in chronic kidney disease with anemia.
Clin Exp Med. 2018 Nov;18(4):563-568. doi: 10.1007/s10238-018-0507-4. Epub 2018 Jun 16.
8
The Authors Reply.
Kidney Int. 2015 Nov;88(5):1195-6. doi: 10.1038/ki.2015.263.

本文引用的文献

8
Insights on urinary NGAL obtained in a primary care setting.
Clin Chim Acta. 2012 Apr 11;413(7-8):733-9. doi: 10.1016/j.cca.2012.01.001. Epub 2012 Jan 9.
9
Biomarkers for the early detection of acute kidney injury.
Curr Opin Pediatr. 2011 Apr;23(2):194-200. doi: 10.1097/MOP.0b013e328343f4dd.
10
The use of targeted biomarkers for chronic kidney disease.
Adv Chronic Kidney Dis. 2010 Nov;17(6):469-79. doi: 10.1053/j.ackd.2010.09.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验