Suppr超能文献

一种基于智能手机的用于高质量心肺复苏的新型胸外按压深度反馈算法。

A new chest compression depth feedback algorithm for high-quality CPR based on smartphone.

作者信息

Song Yeongtak, Oh Jaehoon, Chee Youngjoon

机构信息

1 School of Electrical Engineering, University of Ulsan , Ulsan, Korea.

出版信息

Telemed J E Health. 2015 Jan;21(1):36-41. doi: 10.1089/tmj.2014.0051. Epub 2014 Nov 17.

Abstract

BACKGROUND

Although many smartphone application (app) programs provide education and guidance for basic life support, they do not commonly provide feedback on the chest compression depth (CCD) and rate. The validation of its accuracy has not been reported to date. This study was a feasibility assessment of use of the smartphone as a CCD feedback device. In this study, we proposed the concept of a new real-time CCD estimation algorithm using a smartphone and evaluated the accuracy of the algorithm.

MATERIALS AND METHODS

Using the double integration of the acceleration signal, which was obtained from the accelerometer in the smartphone, we estimated the CCD in real time. Based on its periodicity, we removed the bias error from the accelerometer. To evaluate this instrument's accuracy, we used a potentiometer as the reference depth measurement. The evaluation experiments included three levels of CCD (insufficient, adequate, and excessive) and four types of grasping orientations with various compression directions. We used the difference between the reference measurement and the estimated depth as the error. The error was calculated for each compression.

RESULTS

When chest compressions were performed with adequate depth for the patient who was lying on a flat floor, the mean (standard deviation) of the errors was 1.43 (1.00) mm. When the patient was lying on an oblique floor, the mean (standard deviation) of the errors was 3.13 (1.88) mm.

CONCLUSIONS

The error of the CCD estimation was tolerable for the algorithm to be used in the smartphone-based CCD feedback app to compress more than 51 mm, which is the 2010 American Heart Association guideline.

摘要

背景

尽管许多智能手机应用程序提供基本生命支持的教育和指导,但它们通常不提供关于胸外按压深度(CCD)和速率的反馈。其准确性的验证迄今为止尚未见报道。本研究是对将智能手机用作CCD反馈设备的可行性评估。在本研究中,我们提出了一种使用智能手机的新型实时CCD估计算法的概念,并评估了该算法的准确性。

材料与方法

利用从智能手机中的加速度计获得的加速度信号的双重积分,我们实时估计了CCD。基于其周期性,我们消除了加速度计的偏差误差。为了评估该仪器的准确性,我们使用电位计作为参考深度测量。评估实验包括三种CCD水平(不足、足够和过度)以及四种具有不同按压方向的握持方向。我们将参考测量值与估计深度之间的差异用作误差。对每次按压计算误差。

结果

对于躺在平坦地板上的患者进行足够深度的胸外按压时,误差的平均值(标准差)为1.43(1.00)mm。当患者躺在倾斜地板上时,误差的平均值(标准差)为3.13(1.88)mm。

结论

对于基于智能手机的CCD反馈应用程序中使用的算法,要压缩超过51毫米(这是2010年美国心脏协会指南),CCD估计的误差是可以容忍的。

相似文献

5
Smartwatches as chest compression feedback devices: A feasibility study.智能手表作为胸外按压反馈设备:一项可行性研究。
Resuscitation. 2016 Jun;103:20-23. doi: 10.1016/j.resuscitation.2016.03.014. Epub 2016 Mar 19.
8
Chest compression rate measurement from smartphone video.通过智能手机视频测量胸外按压速率
Biomed Eng Online. 2016 Aug 11;15(1):95. doi: 10.1186/s12938-016-0218-6.

引用本文的文献

8
Real-Time Chest Compression Quality Measurements by Smartphone Camera.智能手机摄像头实时胸外按压质量测量
J Healthc Eng. 2018 Oct 28;2018:6241856. doi: 10.1155/2018/6241856. eCollection 2018.

本文引用的文献

1
In-hospital chest compressions--the patient on a bed.院内胸部按压——患者在床上。
Resuscitation. 2012 Jul;83(7):795-6. doi: 10.1016/j.resuscitation.2012.03.019. Epub 2012 Mar 21.
2
Backboards are important when chest compressions are provided on a soft mattress.背板在软床垫上进行胸外按压时很重要。
Resuscitation. 2012 Aug;83(8):1013-20. doi: 10.1016/j.resuscitation.2012.01.016. Epub 2012 Feb 4.
3
The development of feedback monitoring device for CPR.心肺复苏反馈监测设备的研发
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3294-7. doi: 10.1109/IEMBS.2011.6090894.
4
5
Mobile phone in the chain of survival.移动电话在生存链中。
Resuscitation. 2011 Jun;82(6):776-9. doi: 10.1016/j.resuscitation.2011.02.014. Epub 2011 Apr 8.
6
iCPR: a new application of high-quality cardiopulmonary resuscitation training.iCPR:高质量心肺复苏培训的新应用。
Resuscitation. 2011 Apr;82(4):436-41. doi: 10.1016/j.resuscitation.2010.11.023. Epub 2011 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验