Suppr超能文献

运用定量蛋白质组学鉴定大肠杆菌周质伴侣蛋白YfgM的潜在底物

Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics.

作者信息

Götzke Hansjörg, Muheim Claudio, Altelaar A F Maarten, Heck Albert J R, Maddalo Gianluca, Daley Daniel O

机构信息

From the ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden;

§Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶ Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.

出版信息

Mol Cell Proteomics. 2015 Jan;14(1):216-26. doi: 10.1074/mcp.M114.043216. Epub 2014 Nov 17.

Abstract

How proteins are trafficked, folded, and assembled into functional units in the cell envelope of Gram-negative bacteria is of significant interest. A number of chaperones have been identified, however, the molecular roles of these chaperones are often enigmatic because it has been challenging to assign substrates. Recently we discovered a novel periplasmic chaperone, called YfgM, which associates with PpiD and the SecYEG translocon and operates in a network that contains Skp and SurA. The aim of the study presented here was to identify putative substrates of YfgM. We reasoned that substrates would be incorrectly folded or trafficked when YfgM was absent from the cell, and thus more prone to proteolysis (the loss-of-function rationale). We therefore used a comparative proteomic approach to identify cell envelope proteins that were lower in abundance in a strain lacking yfgM, and strains lacking yfgM together with either skp or surA. Sixteen putative substrates were identified. The list contained nine inner membrane proteins (CusS, EvgS, MalF, OsmC, TdcB, TdcC, WrbA, YfhB, and YtfH) and seven periplasmic proteins (HdeA, HdeB, AnsB, Ggt, MalE, YcgK, and YnjE), but it did not include any lipoproteins or outer membrane proteins. Significantly, AnsB (an asparaginase) and HdeB (a protein involved in the acid stress response), were lower in abundance in all three strains lacking yfgM. For both genes, we ruled out the possibility that they were transcriptionally down-regulated, so it is highly likely that the corresponding proteins are misfolded/mistargeted and turned-over in the absence of YfgM. For HdeB we validated this conclusion in a pulse-chase experiment. The identification of HdeB and other cell envelope proteins as potential substrates will be a valuable resource for follow-up experiments that aim to delineate molecular the function of YfgM.

摘要

革兰氏阴性菌细胞膜中蛋白质如何运输、折叠并组装成功能单元是一个备受关注的重要问题。虽然已经鉴定出了许多伴侣蛋白,然而这些伴侣蛋白的分子作用常常令人困惑,因为确定其底物颇具挑战性。最近我们发现了一种新的周质伴侣蛋白,称为YfgM,它与PpiD和SecYEG转运体相关联,并在一个包含Skp和SurA的网络中发挥作用。本文所述研究的目的是鉴定YfgM的假定底物。我们推断,当细胞中不存在YfgM时,底物会发生错误折叠或运输,因此更容易被蛋白酶水解(功能丧失原理)。因此,我们采用比较蛋白质组学方法来鉴定在缺乏yfgM的菌株以及同时缺乏yfgM和skp或surA的菌株中丰度较低的细胞膜蛋白。共鉴定出16种假定底物。该列表包含9种内膜蛋白(CusS、EvgS、MalF、OsmC、TdcB、TdcC、WrbA、YfhB和YtfH)和7种周质蛋白(HdeA、HdeB、AnsB、Ggt、MalE、YcgK和YnjE),但不包括任何脂蛋白或外膜蛋白。值得注意的是,在所有三种缺乏yfgM的菌株中,AnsB(一种天冬酰胺酶)和HdeB(一种参与酸应激反应的蛋白)的丰度都较低。对于这两个基因,我们排除了它们转录下调的可能性,因此很有可能相应的蛋白质在缺乏YfgM时发生错误折叠/靶向错误并被周转。对于HdeB,我们在脉冲追踪实验中验证了这一结论。将HdeB和其他细胞膜蛋白鉴定为潜在底物,将为后续旨在阐明YfgM分子功能的实验提供宝贵资源。

相似文献

1
Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics.
Mol Cell Proteomics. 2015 Jan;14(1):216-26. doi: 10.1074/mcp.M114.043216. Epub 2014 Nov 17.
2
YfgM is an ancillary subunit of the SecYEG translocon in Escherichia coli.
J Biol Chem. 2014 Jul 4;289(27):19089-97. doi: 10.1074/jbc.M113.541672. Epub 2014 May 22.
3
Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in .
J Biol Chem. 2019 Dec 13;294(50):19167-19183. doi: 10.1074/jbc.RA119.010686. Epub 2019 Nov 7.
4
Escherichia coli HdeB is an acid stress chaperone.
J Bacteriol. 2007 Jan;189(2):603-10. doi: 10.1128/JB.01522-06. Epub 2006 Nov 3.
5
Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics.
Proteomics. 2012 May;12(9):1391-401. doi: 10.1002/pmic.201100633.
6
Involvement of PpiD in Sec-dependent protein translocation.
Biochim Biophys Acta Mol Cell Res. 2018 Feb;1865(2):273-280. doi: 10.1016/j.bbamcr.2017.10.012. Epub 2017 Oct 31.
8
Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron.
J Biol Chem. 2015 Jul 31;290(31):19367-78. doi: 10.1074/jbc.M115.648550. Epub 2015 Jun 19.
9
HdeB functions as an acid-protective chaperone in bacteria.
J Biol Chem. 2015 Jan 2;290(1):65-75. doi: 10.1074/jbc.M114.612986. Epub 2014 Nov 12.
10
Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
Acc Chem Res. 2017 May 16;50(5):1184-1192. doi: 10.1021/acs.accounts.6b00647. Epub 2017 May 3.

引用本文的文献

1
A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability.
Cell Host Microbe. 2025 Feb 12;33(2):200-217.e24. doi: 10.1016/j.chom.2025.01.008. Epub 2025 Feb 4.
2
EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0157723. doi: 10.1128/aem.01577-23. Epub 2023 Nov 29.
5
Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in .
J Biol Chem. 2019 Dec 13;294(50):19167-19183. doi: 10.1074/jbc.RA119.010686. Epub 2019 Nov 7.
6
Combining High-Resolution and Exact Calibration To Boost Statistical Power: A Well-Calibrated Score Function for High-Resolution MS2 Data.
J Proteome Res. 2018 Nov 2;17(11):3644-3656. doi: 10.1021/acs.jproteome.8b00206. Epub 2018 Oct 18.
8
Protein folding in the cell envelope of Escherichia coli.
Nat Microbiol. 2016 Jul 26;1(8):16107. doi: 10.1038/nmicrobiol.2016.107.
9
Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron.
J Biol Chem. 2015 Jul 31;290(31):19367-78. doi: 10.1074/jbc.M115.648550. Epub 2015 Jun 19.

本文引用的文献

1
YfgM is an ancillary subunit of the SecYEG translocon in Escherichia coli.
J Biol Chem. 2014 Jul 4;289(27):19089-97. doi: 10.1074/jbc.M113.541672. Epub 2014 May 22.
2
The membrane insertase YidC.
Biochim Biophys Acta. 2014 Aug;1843(8):1489-96. doi: 10.1016/j.bbamcr.2013.12.022. Epub 2014 Jan 10.
3
Mechanisms of acid resistance in Escherichia coli.
Annu Rev Microbiol. 2013;67:65-81. doi: 10.1146/annurev-micro-092412-155708. Epub 2013 May 20.
4
Quantitative analysis of SecYEG-mediated insertion of transmembrane α-helices into the bacterial inner membrane.
J Mol Biol. 2013 Aug 9;425(15):2813-22. doi: 10.1016/j.jmb.2013.04.025. Epub 2013 May 7.
5
How bacteria survive an acid trip.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5279-80. doi: 10.1073/pnas.1303297110. Epub 2013 Mar 25.
6
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9. doi: 10.1093/nar/gks1262. Epub 2012 Nov 29.
7
Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli.
Protein Sci. 2012 Oct;21(10):1571-6. doi: 10.1002/pro.2131. Epub 2012 Aug 21.
8
In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis.
Analyst. 2012 Aug 7;137(15):3541-8. doi: 10.1039/c2an35445d. Epub 2012 Jun 25.
9
The twin-arginine translocation (Tat) protein export pathway.
Nat Rev Microbiol. 2012 Jun 11;10(7):483-96. doi: 10.1038/nrmicro2814.
10
Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics.
Proteomics. 2012 May;12(9):1391-401. doi: 10.1002/pmic.201100633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验