Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
mBio. 2021 Feb 2;12(1):e03367-20. doi: 10.1128/mBio.03367-20.
The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic EC869. Target cells expressing and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CT or by CdiA-CT, the latter being an EndoU RNase CdiA toxin from GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CT was reduced in target cells and absent in Δ or Δ target cells during competition co-cultures. Importantly, an allele-specific mutation in ( ) renders Δ or Δ target cells specifically resistant to CdiA-CT but not to CdiA-CT, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins. Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. Mutations in genes coding for members of the Sec translocon render cells resistant to these CDI toxins by blocking their movement into and through target cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes.
C 端(CT)毒素结构域的接触依赖性生长抑制(CDI)CdiA 蛋白靶向革兰氏阴性菌,必须穿透靶细胞的外膜和内膜才能发挥生长抑制活性。在这里,我们研究了两种利用细菌通用蛋白分泌机制的 CdiA-CT 毒素,这些毒素在递送到周质后进入周质。SecY 跨膜片段 7 中的 Ser281Phe 氨基酸取代,SecY 是 Sec 转位酶普遍保守的通道形成亚基,降低了肠出血性大肠杆菌 EC869 中膜去极化孤儿 10 毒素的细胞毒性。表达 且缺乏 SecY 辅助因子 PpiD 或 YfgM 之一的靶细胞,无论是通过 CdiA-CT 还是通过 CdiA-CT (后者是来自 GN05224 的 EndoU RNase CdiA 毒素,具有相关的细胞质进入结构域),都能完全免受 CDI 介导的抑制。在竞争共培养物中,靶细胞中的 CdiA-CT 活性降低,而 靶细胞中的活性缺失。重要的是, ()中的等位基因特异性突变使 Δ或 Δ靶细胞对 CdiA-CT 具有特异性抗性,但对 CdiA-CT 没有抗性,这进一步表明 SecY 和 CDI 毒素之间存在直接相互作用。我们的结果提供了遗传证据,证明了未折叠多肽的主要细胞输出途径与两种 CDI 毒素的导入途径之间存在独特的融合。许多细菌物种通过直接的细胞间接触相互作用使用 CDI 系统,该系统提供了将抑制细菌生长的毒素注入彼此的机制。在这里,我们发现两种 CDI 毒素,一种使膜去极化,另一种使 RNA 降解,利用普遍保守的 SecY 转位酶机制将蛋白质输出到靶细胞内。编码 Sec 转位酶成员的基因突变使细胞对这些 CDI 毒素具有抗性,方法是阻止它们进入和穿过靶细胞膜。这项工作为理解 CDI 毒素如何与蛋白输出机制相互作用奠定了基础,并且与开发能够穿透细菌细胞膜的新型抗生素直接相关。