Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015 Lausanne (Switzerland) http://lsci.epfl.ch.
Angew Chem Int Ed Engl. 2015 Jan 7;54(2):664-7. doi: 10.1002/anie.201410569. Epub 2014 Nov 17.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half-reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni-Mo catalyst are then deposited on surface-protected cuprous oxide photocathodes to catalyze sunlight-driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of -6.3 mA cm(-2) at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth-abundant hydrogen evolution reaction catalyst.
利用阳光将水分解为氢气和氧气分子是一种有吸引力的太阳能储存方法。到目前为止,光电化学析氢主要在酸性溶液中进行研究,在酸性溶液中,析氢比在碱性溶液中更容易。在此,我们报告在碱性溶液中进行光电化学制氢,对于互补的氧进化半反应,碱性溶液比酸性溶液更有利。我们首次表明,非晶态硫化钼在碱性介质中是一种高活性的析氢催化剂。然后,将非晶态硫化钼催化剂和 Ni-Mo 催化剂沉积在表面保护的氧化亚铜光阴极上,以在 1M KOH 中催化光驱动制氢。该光阴极在可逆析氢电位下产生-6.3mA/cm²的光电流,这是迄今为止使用丰富的析氢反应催化剂报道的金属氧化物光阴极的最高值。