Suppr超能文献

根据病例报告数据估算艾滋病病毒感染率:方法及在哥伦比亚的应用

Estimating HIV incidence from case-report data: method and an application in Colombia.

作者信息

Vesga Juan Fernando, Cori Anne, van Sighem Ard, Hallett Timothy B

机构信息

aDepartment of Infectious Disease Epidemiology, Imperial College London, London, UK bStichting HIV Monitoring, Amsterdam, the Netherlands.

出版信息

AIDS. 2014 Nov;28 Suppl 4(4):S489-96. doi: 10.1097/QAD.0000000000000466.

Abstract

OBJECTIVE

Quantifying HIV incidence is essential for tracking epidemics but doing this in concentrated epidemic can be a particular challenge because of limited consistent high-quality data about the size, behaviour and prevalence of HIV among key populations. Here, we examine a method for estimating HIV incidence from routinely collected case-reporting data.

METHODS

A flexible model of HIV infection, diagnosis and survival is constructed and fit to time-series data on the number of reported cases in a Bayesian framework. The time trend in the hazard of infection is specified by a penalized B-spline. We examine the performance of the model by applying it to synthetic data and determining whether the method is capable of recovering the input incidence trend. We then apply the method to real data from Colombia and compare our estimates of incidence with those that have been derived using alternative methods.

RESULTS

The method can feasibly be applied and it successfully recovered a range of incidence trajectories in synthetic data experiments. However, estimates for incidence in the recent past are highly uncertain. When applied to data from Colombia, a credible trajectory of incidence is generated which indicates a much lower historic level of HIV incidence than has previously been estimated using other methods.

CONCLUSION

It is feasible, though not satisfactory, to estimate incidence using case-report data in settings with good data availability. Future work should examine the impact on missing or biased data, the utility of alternative formulations of flexible functions specifying incidence trends, and the benefit of also including data on deaths and programme indicators such as the numbers receiving antiretroviral therapy.

摘要

目的

量化艾滋病病毒(HIV)发病率对于追踪疫情至关重要,但在集中流行的情况下进行此项工作可能是一项特殊挑战,因为关于关键人群中HIV的规模、行为和流行率的高质量数据有限且缺乏一致性。在此,我们研究一种从常规收集的病例报告数据中估计HIV发病率的方法。

方法

构建一个灵活的HIV感染、诊断和生存模型,并在贝叶斯框架下将其拟合到报告病例数的时间序列数据。感染风险的时间趋势由惩罚B样条指定。我们通过将该模型应用于合成数据并确定该方法是否能够恢复输入的发病率趋势来检验模型的性能。然后,我们将该方法应用于来自哥伦比亚的真实数据,并将我们的发病率估计值与使用其他方法得出的估计值进行比较。

结果

该方法可切实可行地应用,并且在合成数据实验中成功恢复了一系列发病率轨迹。然而,近期发病率的估计存在高度不确定性。当应用于来自哥伦比亚的数据时,生成了一个可信的发病率轨迹,这表明HIV发病率的历史水平比以前使用其他方法估计的要低得多。

结论

在数据可用性良好的环境中,使用病例报告数据估计发病率是可行的,但并不令人满意。未来的工作应研究缺失或有偏差的数据的影响、指定发病率趋势的灵活函数的替代公式的效用,以及纳入死亡数据和项目指标(如接受抗逆转录病毒治疗的人数)的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d86/4247266/516c714e18db/aids-28-s489-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验