Kang Hyun-Woo, Lee Jin-Wook, Park Nam-Gyu
School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea.
Faraday Discuss. 2014;176:287-99. doi: 10.1039/c4fd00126e. Epub 2014 Nov 14.
The effect of double blocking layers on the Sb(2)S(3)-sensitized all solid state solar cell are investigated. Thin layers of ZrO(2) (blocking layer 1, BL1) and ZnS (blocking layer 2, BL2) are introduced at the TiO(2)/Sb(2)S(3) and Sb(2)S(3)/hole transporting material (HTM) interfaces. The presence of BL1 is found to improve the open-circuit voltage (V(oc)) from 457 mV to 618 mV, whereas BL2 improves mainly short-circuit current density (J(sc)) from 11.1 mA cm(-2) to 14.0 mA cm(-2). Transient photovoltage confirms that the BL1 efficiently blocks charge recombination, responsible for the V(oc) enhancement, whereas the BL2 has little effect on suppression of charge recombination. Surface modification of Sb(2)S(3) by BL2, on the other hand, leads to recovery of Sb(2)S(3) from the surface oxidized Sb(2)O(5), which affects the J(sc) increment. The present results suggest that the TiO(2)/Sb(2)S(3) interface is the main pathway for charge recombination rather than the Sb(2)S(3)/HTM interface. Double blocking layers enhanced the power conversion efficiency by 30%.
研究了双阻挡层对Sb(2)S(3)敏化全固态太阳能电池的影响。在TiO(2)/Sb(2)S(3)和Sb(2)S(3)/空穴传输材料(HTM)界面引入了ZrO(2)薄层(阻挡层1,BL1)和ZnS薄层(阻挡层2,BL2)。发现BL1的存在将开路电压(V(oc))从457 mV提高到618 mV,而BL2主要将短路电流密度(J(sc))从11.1 mA cm(-2)提高到14.0 mA cm(-2)。瞬态光电压证实,BL1有效地阻挡了电荷复合,这是V(oc)提高的原因,而BL2对抑制电荷复合几乎没有影响。另一方面,BL2对Sb(2)S(3)的表面改性导致从表面氧化的Sb(2)O(5)中恢复Sb(2)S(3),这影响了J(sc)的增加。目前的结果表明,TiO(2)/Sb(2)S(3)界面是电荷复合的主要途径,而不是Sb(2)S(3)/HTM界面。双阻挡层使功率转换效率提高了30%。