Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Superconductivity and New Energy R&D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
J Colloid Interface Sci. 2016 Feb 15;464:1-9. doi: 10.1016/j.jcis.2015.11.004. Epub 2015 Nov 4.
Charge transfer is important for the performance of a photoelectrochemical cell. Understanding photogenerated charge accumulation and separation is mandatory for the design and optimisation of photoelectrochemical cells. Unique stacked and embedded heterostructure of Sb2S3/TiO2 nanotube arrays (NTAs) was fabricated through anodic oxidation with the hydrothermal method. Surface photovoltage spectroscopy, phase spectra and photoluminescence measurements were performed to explore the mechanism by which the inorganic hole transport material CuI affects the charge transfer and photoelectrochemical properties of Sb2S3/TiO2 heterostructure NTAs. The interfacial separation and transport of photoinduced charge carriers were also examined by applying current-voltage characteristics (J-V), incident-photon-to-current conversion efficiency (IPCE) and Mott-Schottky techniques. Results show that CuI acts not only as a hole-conducting and electron-blocking material but also as a light-absorbing material in the ultraviolet range. Efficient charge transfer processes exist in CuI/Sb2S3/TiO2 heterostructure NTAs. The photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure NTAs is dramatically improved. Under AM 1.5G illumination at 100mW/cm(2), the short-circuit current density and open-circuit voltage are 3.51mA/cm(2) and 0.87V, respectively. The photoelectric conversion efficiency of CuI/Sb2S3/TiO2 heterostructure NTAs (0.95%) is 36% higher than that of Sb2S3/TiO2 heterostructure NTAs (0.66%).
电荷转移对于光电化学电池的性能很重要。为了设计和优化光电化学电池,必须了解光生电荷的积累和分离。通过阳极氧化和水热法制备了 Sb2S3/TiO2 纳米管阵列(NTs)的独特堆叠和嵌入式异质结构。通过表面光电压谱、位相谱和光致发光测量来研究无机空穴传输材料 CuI 如何影响 Sb2S3/TiO2 异质结构 NTAs 的电荷转移和光电化学性质。通过电流-电压特性(J-V)、入射光子到电流转换效率(IPCE)和 Mott-Schottky 技术也检查了光生载流子的界面分离和传输。结果表明,CuI 不仅充当空穴传导和电子阻挡材料,而且在紫外光范围内还是一种光吸收材料。在 CuI/Sb2S3/TiO2 异质结构 NTAs 中存在有效的电荷转移过程。CuI/Sb2S3/TiO2 异质结构 NTAs 的光电化学性能得到了显著提高。在 AM 1.5G 照明下,100mW/cm2 的光强下,短路电流密度和开路电压分别为 3.51mA/cm2 和 0.87V。CuI/Sb2S3/TiO2 异质结构 NTAs 的光电转换效率(0.95%)比 Sb2S3/TiO2 异质结构 NTAs(0.66%)高 36%。