Suppr超能文献

固态染料敏化太阳能电池中的电荷收集与孔隙填充

Charge collection and pore filling in solid-state dye-sensitized solar cells.

作者信息

Snaith Henry J, Humphry-Baker Robin, Chen Peter, Cesar Ilkay, Zakeeruddin Shaik M, Grätzel Michael

机构信息

Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.

出版信息

Nanotechnology. 2008 Oct 22;19(42):424003. doi: 10.1088/0957-4484/19/42/424003. Epub 2008 Sep 25.

Abstract

The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process of TiO(2) mesopore infiltration with spiro-MeOTAD by examining the cross-sectional images of and performing photo-induced absorption spectroscopy on devices with a range of thickness, infiltrated with spiro-MeOTAD with a range of concentrations. We present our interpretation of the mechanism for material infiltration, and by improving the casting conditions demonstrate efficient charge collection through devices of over 7 µm in thickness. This investigation represents an improvement in our understanding of the limiting factors to the dye-sensitized solar cell. However, much work, focused on composite formation and improved kinetic competition, is required to realize the true potential of this concept.

摘要

对于包含固态有机空穴传输体的染料敏化太阳能电池(DSC),其太阳能到电能的转换效率可以超过5%。然而,这是针对比活性复合材料的光学深度显著更薄的器件而言的,并且与基于液体电解质的DSC相比,后者的效率超过10%。如果光伏过程中的所有步骤都能得到优化,那么这种效率显然可以提高一倍以上。该领域目前正在解决两个问题。第一个问题旨在通过减少电荷复合或提高电荷传输速率来提高电子扩散长度。这将使更大比例的光生电荷能够被收集。第二个问题,尽管研究较少,旨在改善物理复合材料的形成,在这种情况下是用有机空穴传输体2,2',7,7'-四(N,N-二对甲氧基苯基胺)-9,9'-螺二芴(spiro-MeOTAD)渗透介孔TiO₂。在这里,我们进行了广泛的实验研究,以阐明影响太阳能电池性能的限制因素。我们首先通过小扰动光电压和光电流衰减测量,研究了实际工作条件下固态染料敏化太阳能电池中的电荷传输和复合。从这些测量中我们推断,短路附近的电子扩散长度长达20 µm。然而,在实际太阳条件下,当施加的偏压接近开路电势时,扩散长度变得与薄膜厚度相当,约为2 µm,这表明由于电荷收集效率低下,开路电压、填充因子以及因此的效率确实存在损失。另一方面,短路附近的长扩散长度表明,除了电荷收集效率低下之外,另一个过程使得太阳能电池不理想。我们通过检查一系列厚度的器件的横截面图像并对其进行光致吸收光谱分析,研究了spiro-MeOTAD对TiO₂介孔的渗透过程,这些器件用一系列浓度的spiro-MeOTAD进行了渗透。我们给出了材料渗透机制的解释,并通过改善浇铸条件,展示了通过厚度超过7 µm的器件实现高效电荷收集。这项研究代表了我们对染料敏化太阳能电池限制因素理解的进步。然而,要实现这一概念的真正潜力,还需要开展大量专注于复合材料形成和改善动力学竞争的工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验