Suppr超能文献

意大利黑麦草(多花黑麦草)灰斑病抗性新主效基因座的鉴定。

Identification of a novel major locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.).

作者信息

Takahashi Wataru, Miura Yuichi, Sasaki Tohru, Takamizo Tadashi

出版信息

BMC Plant Biol. 2014 Nov 18;14:303. doi: 10.1186/s12870-014-0303-6.

Abstract

BACKGROUND

Gray leaf spot (GLS), caused by Magnaporthe oryzae (anamorph Pyricularia oryzae), in ryegrasses is a very serious problem. Heavily infected small seedlings die within a matter of days, and stands of the grasses are seriously damaged by the disease. Thus, the development of GLS-resistant cultivars has become a concern in ryegrass breeding.

RESULTS

Phenotypic segregations in a single cross-derived F1 population of Italian ryegrass (Lolium multiflorum Lam.) indicated that the GLS resistance in the population was possibly controlled by one or two dominant genes with 66.5-77.9% of broad-sense heritability. In bulked segregant analyses, two simple sequence repeat (SSR) markers, which have so far been reported to locate on linkage group (LG) 3 of Italian ryegrass, showed specific signals in the resistant parent and resistant bulk, indicating that the resistance gene locus was possibly in the LG 3. We thus constructed a genetic linkage map of the LG 3 covering 133.6 centimorgan with other SSR markers of the LG 3 of Italian ryegrass and grass anchor probes that have previously been assigned to LG 3 of ryegrasses, and with rice expressed sequence tag (EST)-derived markers selected from a rice EST map of chromosome (Chr) 1 since LG 3 of ryegrasses are syntenic to rice Chr 1. Quantitative trait locus (QTL) analysis with the genetic linkage map and phenotypic data of the F1 population detected a major locus for GLS resistance. Proportions of phenotypic variance explained by the QTL at the highest logarithm of odds scores were 61.0-69.5%.

CONCLUSIONS

A resistance locus was confirmed as novel for GLS resistance, because its genetic position was different from other known loci for GLS resistance. Broad-sense heritability and the proportion of phenotypic variance explained by the QTL were similar, suggesting that most of the genetic factors for the resistance phenotype against GLS in the F1 population can be explained by a function of the single resistance locus. We designated the putative gene for the novel resistance locus as LmPi2. LmPi2 will be useful for future development of GLS-resistant cultivars in combination with other resistance genes.

摘要

背景

由稻瘟病菌(无性型为稻梨孢)引起的黑麦草灰斑病是一个非常严重的问题。受严重感染的小幼苗在几天内就会死亡,草的植株会受到这种病害的严重损害。因此,培育抗灰斑病的黑麦草品种已成为黑麦草育种中的一个关注点。

结果

意大利黑麦草(多花黑麦草)单交衍生的F1群体的表型分离表明,该群体对灰斑病的抗性可能由一到两个显性基因控制,广义遗传力为66.5 - 77.9%。在混合分组分析法中,两个简单序列重复(SSR)标记(据报道它们位于意大利黑麦草的连锁群(LG)3上)在抗性亲本和抗性混合群体中显示出特异性信号,这表明抗性基因位点可能位于LG 3上。因此,我们利用意大利黑麦草LG 3的其他SSR标记以及先前已定位到黑麦草LG 3上的草锚定探针,构建了LG 3的遗传连锁图谱,该图谱覆盖133.6厘摩,并且还利用了从水稻第1号染色体(Chr)的水稻表达序列标签(EST)图谱中选择的水稻EST衍生标记,因为黑麦草的LG 3与水稻Chr 1是同线的。利用该遗传连锁图谱和F1群体的表型数据进行数量性状位点(QTL)分析,检测到一个抗灰斑病的主效位点。在最高对数似然比分数时,该QTL解释的表型变异比例为61.0 - 69.5%。

结论

一个抗性位点被确认为对灰斑病抗性来说是新的,因为它的遗传位置与其他已知的灰斑病抗性位点不同。广义遗传力和QTL解释的表型变异比例相似,这表明F1群体中抗灰斑病表型的大多数遗传因素可以由单个抗性位点的作用来解释。我们将这个新抗性位点的推定基因命名为LmPi2。LmPi2与其他抗性基因结合,将有助于未来抗灰斑病品种的培育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c35c/4248433/d343d15c832b/12870_2014_303_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验