Gurcha Sudagar S, Usha Veeraraghavan, Cox Jonathan A G, Fütterer Klaus, Abrahams Katherine A, Bhatt Apoorva, Alderwick Luke J, Reynolds Robert C, Loman Nicholas J, Nataraj VijayaShankar, Alemparte Carlos, Barros David, Lloyd Adrian J, Ballell Lluis, Hobrath Judith V, Besra Gurdyal S
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
Department of Chemistry, University of Alabama at Birmingham, College of Arts and Sciences, 1530 3rd Avenue South, Birmingham, Alabama, 35294-1240, United States of America.
PLoS One. 2014 Nov 19;9(11):e113568. doi: 10.1371/journal.pone.0113568. eCollection 2014.
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at (535)GAC>(535)AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.
人类病原体结核分枝杆菌是肺结核(TB)的病原体,这种疾病在全球范围内死亡率很高。当前的治疗方案正受到结核分枝杆菌多药耐药和广泛耐药菌株的严重威胁,因此确定新的抑制剂及其靶点至关重要。我们在存在化合物1的10倍最小抑菌浓度(MIC)的情况下,在牛分枝杆菌卡介苗中产生了自发抗性突变体,化合物1是先前确定的一种在培养中对分枝杆菌生长有效的抑制剂。对两个抗性突变体进行全基因组测序,结果显示在一个案例中,aspS基因存在单核苷酸多态性,即(535)GAC>(535)AAC(D179N),而在第二个突变体中,在aspS启动子区域上游发现了一个单核苷酸多态性。我们通过过表达牛分枝杆菌卡介苗aspS或耻垢分枝杆菌aspS来探测全细胞靶点结合情况,这分别导致对化合物1的MIC增加了10倍和超过10倍。为了分析抑制剂1对结核分枝杆菌天冬酰胺合成酶(Mt-AspS)活性的影响,我们使用适用于高通量筛选形式的强大的非tRNA依赖性测定法对该酶进行了过表达、纯化和动力学表征。最后,为了帮助进行从苗头化合物到先导化合物的优化,确定了无配体耻垢分枝杆菌天冬酰胺合成酶的晶体结构,分辨率为2.4 Å。