Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States.
ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20978-84. doi: 10.1021/am505742y. Epub 2014 Nov 26.
Establishing a blocking layer between the interfaces of the photoanode is an effective approach to improve the performance of dye-sensitized solar cells (DSSCs). In this work, HfO2 blocking layers are deposited via atomic layer deposition (ALD) onto tin-doped indium oxide (ITO) and TiO2. In both cases, addition of the blocking layer increases cell efficiencies to greater than 7%. The improved performance for a HfO2 layer inserted between the ITO/TiO2 interface is associated with an energy barrier that reduces electron recombination. HfO2 blocking layers between the TiO2/dye interface show more complex behavior and are more sensitive to the number of ALD cycles. For thin blocking layers on TiO2, the improved device performance is attributed to the passivation of surface states in TiO2. A distinct transition in dark current and electron lifetime are observed after 4 ALD cycles. These changes to performance indicate thick HfO2 layers on TiO2 formed an energy barrier that significantly hinders cell performance.
在光阳极的界面之间建立阻挡层是提高染料敏化太阳能电池(DSSC)性能的有效方法。在这项工作中,通过原子层沉积(ALD)在掺锡氧化铟(ITO)和 TiO2 上沉积了 HfO2 阻挡层。在这两种情况下,添加阻挡层都将电池效率提高到 7%以上。在 ITO/TiO2 界面之间插入 HfO2 层后,性能得到改善与降低电子复合的能垒有关。TiO2/染料界面之间的 HfO2 阻挡层表现出更复杂的行为,并且对 ALD 循环次数更敏感。对于 TiO2 上的薄阻挡层,改进的器件性能归因于 TiO2 表面态的钝化。在经过 4 个 ALD 循环后,观察到暗电流和电子寿命的明显转变。这些性能变化表明 TiO2 上的厚 HfO2 层形成了一个能垒,显著阻碍了电池的性能。