Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.
Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
Nucleic Acids Res. 2018 Jul 27;46(13):6528-6543. doi: 10.1093/nar/gky490.
The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
新霉素感应核糖开关是最小的具有生物功能的 RNA 核糖开关,形成一个带有 U 形环的发夹 - 这是一个众所周知的 RNA 基序,包含一个保守的尿嘧啶。之前已经表明,由于 N3 的质子化,该保守尿嘧啶的 U→C 取代不会改变核糖开关的结构。此外,在其他 U 形转弯中,胞嘧啶可以替代尿嘧啶。在这里,我们使用分子动力学模拟来研究新霉素感应核糖开关中这种取代的分子基础,并表明野生型 RNA 中稳定结构的单价阳离子结合位点是其结构影响可忽略不计的主要原因。然后,我们使用 NMR 光谱学来确认该阳离子结合位点的存在,并证明其对 RNA 稳定性的影响。最后,使用量子化学计算,我们表明阳离子结合位点改变了野生型 U 形转弯的电子环境,使其更类似于胞嘧啶突变体。该研究揭示了各种能量贡献之间惊人复杂和微妙的相互作用,这些能量贡献塑造了核酸的 3D 结构和进化。