Suppr超能文献

分子动力学揭示CRISPR-Cas9中非靶向DNA切割的催化机制

Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.

作者信息

Casalino Lorenzo, Nierzwicki Łukasz, Jinek Martin, Palermo Giulia

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

Department of Bioengineering, University of California Riverside, Riverside, California 92521, United States.

出版信息

ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.

Abstract

CRISPR-Cas9 is a cutting-edge genome editing technology, which uses the endonuclease Cas9 to introduce mutations at desired sites of the genome. This revolutionary tool is promising to treat a myriad of human genetic diseases. Nevertheless, the molecular basis of DNA cleavage, which is a fundamental step for genome editing, has not been established. Here, quantum-classical molecular dynamics (MD) and free energy methods are used to disclose the two-metal-dependent mechanism of phosphodiester bond cleavage in CRISPR-Cas9. MD reveals a conformational rearrangement of the Mg-bound RuvC active site, which entails the relocation of H983 to act as a general base. Then, the DNA cleavage proceeds through a concerted associative pathway fundamentally assisted by the joint dynamics of the two Mg ions. This clarifies previous controversial experimental evidence, which could not fully establish the catalytic role of the conserved H983 and the metal cluster conformation. The comparison with other two-metal-dependent enzymes supports the identified mechanism and suggests a common catalytic strategy for genome editing and recombination. Overall, the non-target DNA cleavage catalysis described here resolves a fundamental open question in the CRISPR-Cas9 biology and provides valuable insights for improving the catalytic efficiency and the metal-dependent function of the Cas9 enzyme, which are at the basis of the development of genome editing tools.

摘要

CRISPR-Cas9是一种前沿的基因组编辑技术,它利用核酸内切酶Cas9在基因组的期望位点引入突变。这一革命性工具有望治疗众多人类遗传疾病。然而,作为基因组编辑基础步骤的DNA切割的分子机制尚未明确。在此,采用量子经典分子动力学(MD)和自由能方法来揭示CRISPR-Cas9中磷酸二酯键切割的双金属依赖机制。分子动力学揭示了与镁结合的RuvC活性位点的构象重排,这需要H983重新定位以充当通用碱。然后,DNA切割通过一个协同的缔合途径进行,该途径从根本上由两个镁离子的联合动力学辅助。这澄清了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他双金属依赖酶的比较支持了所确定的机制,并提出了基因组编辑和重组的共同催化策略。总体而言,此处描述的非靶向DNA切割催化解决了CRISPR-Cas9生物学中一个基本的开放性问题,并为提高Cas9酶的催化效率和金属依赖功能提供了有价值的见解,而这是基因组编辑工具开发的基础。

相似文献

3
Structure and Dynamics of the CRISPR-Cas9 Catalytic Complex.CRISPR-Cas9 催化复合物的结构与动力学。
J Chem Inf Model. 2019 May 28;59(5):2394-2406. doi: 10.1021/acs.jcim.8b00988. Epub 2019 Feb 27.
5
Active-Site Models of Cas9 in DNA Cleavage State.处于DNA切割状态的Cas9活性位点模型。
Front Mol Biosci. 2021 Apr 21;8:653262. doi: 10.3389/fmolb.2021.653262. eCollection 2021.
7
Establishing the allosteric mechanism in CRISPR-Cas9.确定CRISPR-Cas9中的变构机制。
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
8
CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.CRISPR-Cas9 构象激活的增强分子模拟研究。
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265. doi: 10.1073/pnas.1707645114. Epub 2017 Jun 26.
10
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.间隔基序邻近基序诱导的变构激活 CRISPR-Cas9。
J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.

引用本文的文献

9
Engineering Cas9: next generation of genomic editors.工程化 Cas9:新一代基因组编辑工具。
Appl Microbiol Biotechnol. 2024 Feb 14;108(1):209. doi: 10.1007/s00253-024-13056-y.
10
Coupled catalytic states and the role of metal coordination in Cas9.耦合催化状态及金属配位在Cas9中的作用。
Nat Catal. 2023 Oct;6(10):969-977. doi: 10.1038/s41929-023-01031-1. Epub 2023 Oct 2.

本文引用的文献

2
Establishing the allosteric mechanism in CRISPR-Cas9.确定CRISPR-Cas9中的变构机制。
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验