Äijänen Tarja, Koivuniemi Artturi, Javanainen Matti, Rissanen Sami, Rog Tomasz, Vattulainen Ilpo
Department of Physics, Tampere University of Technology, Tampere, Finland.
VTT Technical Research Center of Finland, Espoo, Finland.
PLoS Comput Biol. 2014 Nov 20;10(11):e1003987. doi: 10.1371/journal.pcbi.1003987. eCollection 2014 Nov.
Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.
胆固醇酯转运蛋白(CETP)介导人血浆中不同脂蛋白组分之间中性脂质(胆固醇酯、甘油三酯)和磷脂的相互转移。一种名为阿那曲匹的新型分子药物已被证明可抑制CETP活性,从而提高高密度脂蛋白(HDL)胆固醇水平并降低低密度脂蛋白(LDL)胆固醇水平,因此使CETP抑制成为预防和治疗各种心血管疾病发展的一个有吸引力的靶点。我们这项工作的目的是使用原子分子动力学模拟来阐明阿那曲匹的抑制机制,并揭示该药物与CETP之间的相互作用。结果显示阿那曲匹对CETP的凹面具有明显的亲和力,尤其是对N端隧道开口区域。阿那曲匹的主要结合位点位于CETP内部的隧道中,靠近N端开口周围的残基。自由能计算表明,当阿那曲匹位于该区域时,它会阻碍胆固醇酯从CETP中扩散出来的能力。模拟还进一步揭示了阿那曲匹调节磷脂和螺旋X结构 - 功能关系的能力,后者代表CETP中对与脂蛋白进行中性脂质交换过程很重要的结构区域。总之,模拟结果表明当阿那曲匹转移到脂质结合口袋中时可实现对CETP的抑制。本研究获得的新见解在开发能够预防心血管疾病进展的新型分子药物方面具有潜在用途。