Detcheverry F
Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne, France,
Eur Phys J E Soft Matter. 2014 Nov;37(11):114. doi: 10.1140/epje/i2014-14114-2. Epub 2014 Nov 24.
We consider random walks that arise from the repetition of independent, statistically identical steps, whose nature may be arbitrary. Such unimodal motions appear in a variety of contexts, including particle propagation, cell motility, swimming of micro-organisms, animal motion and foraging strategies. Building on general frameworks, we focus on the case where step duration is exponentially distributed. We explore systematically unimodal processes whose steps are ballistic, diffusive, cyclic or governed by rotational diffusion, and give the exact propagator in Fourier-Laplace domain, from which the moments and the diffusion coefficient are obtained. We also address bimodal processes, where two kinds of step are taken in turn, and show that the mean square displacement, the quantity of prime importance in experiments, is simply related to those of unimodal motions.
我们考虑由独立、统计上相同的步骤重复产生的随机游走,其性质可以是任意的。这种单峰运动出现在各种情境中,包括粒子传播、细胞运动、微生物游动、动物运动和觅食策略。基于一般框架,我们专注于步长时间呈指数分布的情况。我们系统地探索了步长为弹道式、扩散式、循环式或由旋转扩散控制的单峰过程,并给出了傅里叶 - 拉普拉斯域中的精确传播子,从中可以得到矩和扩散系数。我们还研究了双峰过程,即依次采取两种类型的步骤,并表明均方位移(实验中最重要的量)与单峰运动的均方位移有简单的关系。