Suppr超能文献

广义的奔跑-转向运动:从细菌到 Lévy 游走。

Generalized run-and-turn motions: From bacteria to Lévy walks.

机构信息

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.

出版信息

Phys Rev E. 2017 Jul;96(1-1):012415. doi: 10.1103/PhysRevE.96.012415. Epub 2017 Jul 26.

Abstract

Swimming bacteria exhibit a repertoire of motility patterns, in which persistent motion is interrupted by turning events. What are the statistical properties of such random walks? If some particular instances have long been studied, the general case where turning times do not follow a Poisson process has remained unsolved. We present a generic extension of the continuous time random walks formalism relying on operators and noncommutative calculus. The approach is first applied to a unimodal model of bacterial motion. We examine the existence of a minimum in velocity correlation function and discuss the maximum of diffusivity at an optimal value of rotational diffusion. The model is then extended to bimodal patterns and includes as particular cases all swimming strategies: run-and-tumble, run-stop, run-reverse and run-reverse-flick. We characterize their velocity correlation functions and investigate how bimodality affects diffusivity. Finally, the wider applicability of the method is illustrated by considering curved trajectories and Lévy walks. Our results are relevant for intermittent motion of living beings, be they swimming micro-organisms or crawling cells.

摘要

游动细菌表现出一系列的运动模式,其中持续运动被转向事件打断。这种随机游动的统计特性是什么?如果某些特定的情况已经研究了很长时间,那么转向时间不遵循泊松过程的一般情况仍然没有得到解决。我们提出了一种基于算子和非交换微积分的连续时间随机游走形式的通用扩展。该方法首先应用于细菌运动的单峰模型。我们研究了速度相关函数中是否存在最小值,并讨论了在旋转扩散的最佳值处扩散率的最大值。然后,该模型扩展到双峰模式,并包括所有游动策略作为特例:跑动-翻转、跑动-停止、跑动-反转和跑动-反转-弹回。我们描述了它们的速度相关函数,并研究了双峰模式如何影响扩散率。最后,通过考虑弯曲轨迹和 Lévy 游走,说明了该方法的更广泛适用性。我们的结果与生物的间歇性运动有关,无论是游动的微生物还是爬行的细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验