Thiel Felix, Schimansky-Geier Lutz, Sokolov Igor M
Institute of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021117. doi: 10.1103/PhysRevE.86.021117. Epub 2012 Aug 16.
A random walk scheme, consisting of alternating phases of regular Brownian motion and Lévy walks, is proposed as a model for run-and-tumble bacterial motion. Within the continuous-time random walk approach we obtain the long-time and short-time behavior of the mean squared displacement of the walker as depending on the properties of the dwelling time distribution in each phase. Depending on these distributions, normal diffusion, superdiffusion, and ballistic spreading may arise.
一种由规则布朗运动和列维游走交替阶段组成的随机游走方案被提出来作为细菌“奔跑-翻滚”运动的模型。在连续时间随机游走方法中,我们根据每个阶段停留时间分布的特性,得到了游走者平均平方位移的长时间和短时间行为。根据这些分布,可能会出现正常扩散、超扩散和弹道式传播。