Rattner Amir, Wang Yanshu, Zhou Yulian, Williams John, Nathans Jeremy
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
Invest Ophthalmol Vis Sci. 2014 Nov 20;55(12):8614-25. doi: 10.1167/iovs.14-15693.
To define the role of hypoxia and vascular endothelial growth factor (VEGF) in modifying the pattern, density, and permeability of the retinal vasculature in mouse models in which Norrin/Frizzled4 signaling is impaired.
Retinal vascular structure was analyzed in mice with mutation of Ndp (the gene coding for Norrin) or Frizzle4 (Fz4) with or without three additional perturbations: (1) retinal hyperoxia and reduction of VEGF, (2) reduced induction of VEGF in response to hypoxia, or (3) reduced responsiveness of vascular endothelial cells (ECs) to VEGF. These perturbations were produced, respectively, by (1) genetic ablation of rod photoreceptors in the retinal degeneration 1 (rd1) mutant background, (2) conditional deletion of the gene coding for hypoxia-inducible factor (HIF)-2alpha either in all neural retina cells or specifically in Müller glia, and (3) conditional deletion of the VEGF coreceptor neuropilin1 (NRP1) in ECs.
All three conditions reduced vascular proliferation. Eliminating HIF2-alpha in Müller glia blocked VEGF induction in the inner nuclear layer, identifying HIF2-alpha as the transcription factor responsible for the hypoxia response in these cells. When Norrin/Frizzled4 signaling was eliminated, a secondary elevation in VEGF levels was required to compromise the barrier to transendothelial movement of high molecular weight compounds.
In the absence of Norrin or Frizzled4, the vascular phenotype is determined by the primary defect in Norrin/Frizzled4 signaling (i.e., canonical Wnt signaling) and compensatory responses resulting from hypoxia. This work may be useful in guiding therapeutic strategies for the treatment of familial exudative vitreoretinopathy (FEVR).
在诺里蛋白/卷曲蛋白4信号受损的小鼠模型中,明确缺氧和血管内皮生长因子(VEGF)在改变视网膜血管系统的模式、密度及通透性方面所起的作用。
对Ndp(编码诺里蛋白的基因)或卷曲蛋白4(Fz4)发生突变的小鼠,分别在有或无另外三种干扰因素的情况下分析视网膜血管结构:(1)视网膜高氧及VEGF减少;(2)缺氧时VEGF诱导减少;(3)血管内皮细胞(ECs)对VEGF的反应性降低。这些干扰因素分别通过以下方式产生:(1)在视网膜变性1(rd1)突变背景下对视杆光感受器进行基因消融;(2)在所有神经视网膜细胞或特异性在米勒胶质细胞中条件性缺失编码缺氧诱导因子(HIF)-2α的基因;(3)在ECs中条件性缺失VEGF共受体神经纤毛蛋白1(NRP1)。
所有这三种情况均降低了血管增殖。在米勒胶质细胞中消除HIF2-α可阻断内核层中的VEGF诱导,确定HIF2-α为这些细胞中负责缺氧反应的转录因子。当诺里蛋白/卷曲蛋白4信号被消除时,需要VEGF水平的二次升高才能破坏高分子量化合物跨内皮移动的屏障。
在没有诺里蛋白或卷曲蛋白4的情况下,血管表型由诺里蛋白/卷曲蛋白4信号的原发性缺陷(即经典Wnt信号)以及缺氧引起的代偿反应决定。这项工作可能有助于指导家族性渗出性玻璃体视网膜病变(FEVR)的治疗策略。