Suppr超能文献

在胶质母细胞瘤患者中,基于色氨酸PET定义的大体肿瘤体积比基于标准MRI的计划能更好地覆盖初始进展情况。

Tryptophan PET-defined gross tumor volume offers better coverage of initial progression than standard MRI-based planning in glioblastoma patients.

作者信息

Christensen Michael, Kamson David Olayinka, Snyder Michael, Kim Harold, Robinette Natasha L, Mittal Sandeep, Juhász Csaba

机构信息

Department of Radiation Oncology, Barbara Ann, Karmanos Cancer Center, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.

Departments of Pediatrics and Neurology, Wayne State University School of Medicine, Detroit, MI, USA. PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.

出版信息

J Radiat Oncol. 2014 Jun;3(2):131-138. doi: 10.1007/s13566-013-0132-5.

Abstract

OBJECTIVE

Glioblastoma is an infiltrative malignancy that tends to extend beyond the MRI-defined tumor volume. We utilized positron emission tomography (PET) imaging with the radiotracer alpha-[C]methyl-L -tryptophan (AMT) to develop a reliable high-risk gross tumor volume (HR-GTV) method for delineation of glioblastoma. AMT can detect solid tumor mass and tumoral brain infiltration by increased tumoral tryptophan transport and metabolism via the immunosuppressive kynurenine pathway.

METHODS

We reviewed all patients in our database with histologically proven glioblastoma who underwent preoperative AMT-PET scan prior to surgery and chemoradiation. Treated radiotherapy volumes were derived from the simulation CT with MRI fusion. High-GTV with contrast enhanced T1-weighted MRI alone (GTV) was defined as the postoperative cavity plus any residual area of enhancement on postcontrast T1-weighted images. AMT-PET images were retrospectively fused to the simulation CT, and a high-risk GTVs generated by both AMT-PET alone (GTV) was defined using a threshold previously established to distinguish tumor tissue from peritumoral edema. A composite volume of MRI and AMT tumor volume was also created (combination of MRI fused with AMT-PET data; GTV). In patients with definitive radiographic progression, follow-up MRI demonstrating initial tumor progression was fused with the pretreatment images and a progression volume was contoured. The coverage of the progression volume by GTV, GTV, and GTV was determined and compared using the Wilcoxon's signed-rank test.

RESULTS

Eleven patients completed presurgical AMT-PET scan, seven of whom had progressive disease after initial therapy. GTV (mean, 50.2 cm) and GTV (mean, 48.9 cm) were not significantly different. Mean concordance index of the volumes was 39±15 %. Coverage of the initial recurrence volume by HR-GTV (mean, 52 %) was inferior to both GTV (mean, 68 %; =0.028) and GTV (mean 73 %; =0.018). The AMT-PET-exclusive coverage was up to 41 % of the recurrent volume. There was a tendency towards better recurrence coverage with GTV than with GTV alone ( =0.068). Addition of 5 mm concentric margin around GTV, GTV, and GTV would have completely covered the initial progression volume in 14, 57, and 71 % of the patients, respectively.

CONCLUSION

We found that a GTV defined by AMT-PET produced similar volume, but superior recurrence coverage than the treated standard MRI-determined volume. A prospective study is necessary to fully determine the usefulness of AMT-PET for volume definition in glioblastoma radiotherapy planning.

摘要

目的

胶质母细胞瘤是一种浸润性恶性肿瘤,往往超出MRI定义的肿瘤体积。我们利用正电子发射断层扫描(PET)成像与放射性示踪剂α-[C]甲基-L-色氨酸(AMT)来开发一种可靠的高危大体肿瘤体积(HR-GTV)方法,用于勾画胶质母细胞瘤。AMT可以通过免疫抑制犬尿氨酸途径增加肿瘤色氨酸转运和代谢来检测实体肿瘤肿块和肿瘤脑浸润。

方法

我们回顾了数据库中所有经组织学证实为胶质母细胞瘤且在手术及放化疗前接受过术前AMT-PET扫描的患者。治疗放疗体积来自模拟CT与MRI融合图像。单纯对比增强T1加权MRI定义的高GTV(GTV)为术后腔隙加上对比增强T1加权图像上任何残留的强化区域。AMT-PET图像回顾性融合到模拟CT上,单独由AMT-PET生成的高危GTV(GTV)使用先前确定的阈值来定义,以区分肿瘤组织与瘤周水肿。还创建了MRI和AMT肿瘤体积的复合体积(MRI与AMT-PET数据融合;GTV)。在有明确影像学进展的患者中,将显示初始肿瘤进展的随访MRI与治疗前图像融合,并勾勒出进展体积。使用Wilcoxon符号秩检验确定并比较GTV、GTV和GTV对进展体积的覆盖情况。

结果

11例患者完成了术前AMT-PET扫描,其中7例在初始治疗后病情进展。GTV(平均50.2 cm)和GTV(平均48.9 cm)无显著差异。体积的平均一致性指数为39±15%。HR-GTV(平均52%)对初始复发体积的覆盖低于GTV(平均68%;P=0.028)和GTV(平均73%;P=0.018)。仅AMT-PET的覆盖范围高达复发体积的41%。GTV对复发的覆盖有优于单独GTV的趋势(P=0.068)。在GTV、GTV和GTV周围添加5 mm同心边缘将分别在14%、57%和71%的患者中完全覆盖初始进展体积。

结论

我们发现,由AMT-PET定义的GTV产生的体积相似,但对复发的覆盖优于治疗标准MRI确定的体积。需要进行前瞻性研究以充分确定AMT-PET在胶质母细胞瘤放疗计划中体积定义的有用性。

相似文献

2
Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates.
J Neurooncol. 2013 Mar;112(1):121-32. doi: 10.1007/s11060-013-1043-4. Epub 2013 Jan 9.
6
7
Contribution of 68Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy.
Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):68-73. doi: 10.1016/j.ijrobp.2012.03.021. Epub 2012 May 9.
9
Is there any additional benefit of Ga-PSMA PET on radiotherapy target volume definition in patients with glioblastoma?
Br J Radiol. 2022 Oct 1;95(1139):20220049. doi: 10.1259/bjr.20220049. Epub 2022 Sep 20.

引用本文的文献

1
A Comparison of PET Tracers in Recurrent High-Grade Gliomas: A Systematic Review.
Int J Mol Sci. 2022 Dec 27;24(1):408. doi: 10.3390/ijms24010408.
3
Diagnostic and Dosimetry Features of [Cu]CuCl in High-Grade Paediatric Infiltrative Gliomas.
Mol Imaging Biol. 2023 Apr;25(2):391-400. doi: 10.1007/s11307-022-01769-3. Epub 2022 Aug 30.
4
Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells.
J Oncol. 2019 Jul 29;2019:1740763. doi: 10.1155/2019/1740763. eCollection 2019.
5
Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival.
Neuro Oncol. 2019 Feb 14;21(2):264-273. doi: 10.1093/neuonc/noy169.
6
Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring.
Front Oncol. 2016 Feb 29;6:44. doi: 10.3389/fonc.2016.00044. eCollection 2016.
7
Positron emission tomography of high-grade gliomas.
J Neurooncol. 2016 May;127(3):415-25. doi: 10.1007/s11060-016-2077-1. Epub 2016 Feb 20.

本文引用的文献

1
Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates.
J Neurooncol. 2013 Mar;112(1):121-32. doi: 10.1007/s11060-013-1043-4. Epub 2013 Jan 9.
2
The kynurenine pathway in brain tumor pathogenesis.
Cancer Res. 2012 Nov 15;72(22):5649-57. doi: 10.1158/0008-5472.CAN-12-0549. Epub 2012 Nov 9.
3
Accurate differentiation of recurrent gliomas from radiation injury by kinetic analysis of α-11C-methyl-L-tryptophan PET.
J Nucl Med. 2012 Jul;53(7):1058-64. doi: 10.2967/jnumed.111.097881. Epub 2012 May 31.
4
FET-PET for malignant glioma treatment planning.
Radiother Oncol. 2011 Apr;99(1):44-8. doi: 10.1016/j.radonc.2011.03.001. Epub 2011 Mar 30.
5
Advances in MRI assessment of gliomas and response to anti-VEGF therapy.
Curr Neurol Neurosci Rep. 2011 Jun;11(3):336-44. doi: 10.1007/s11910-011-0179-x.
6
Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI.
Br J Radiol. 2011 Mar;84(999):271-8. doi: 10.1259/bjr/10315979. Epub 2010 Nov 2.
7
Clinical use of PET-CT data for radiotherapy planning: what are we looking for?
Radiother Oncol. 2010 Sep;96(3):277-9. doi: 10.1016/j.radonc.2010.07.021. Epub 2010 Aug 18.
8
Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas.
Lancet Neurol. 2010 Sep;9(9):906-20. doi: 10.1016/S1474-4422(10)70181-2. Epub 2010 Aug 10.
9
Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group.
J Clin Oncol. 2010 Apr 10;28(11):1963-72. doi: 10.1200/JCO.2009.26.3541. Epub 2010 Mar 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验