Suppr超能文献

通过 α-11C-甲基-L-色氨酸 PET 的动力学分析准确区分复发性脑胶质瘤与放射性损伤。

Accurate differentiation of recurrent gliomas from radiation injury by kinetic analysis of α-11C-methyl-L-tryptophan PET.

机构信息

PET Center, Children's Hospital of Michigan, Detroit, MI, USA.

出版信息

J Nucl Med. 2012 Jul;53(7):1058-64. doi: 10.2967/jnumed.111.097881. Epub 2012 May 31.

Abstract

UNLABELLED

PET of amino acid transport and metabolism may be more accurate than conventional neuroimaging in differentiating recurrent gliomas from radiation-induced tissue changes. α-(11)C-methyl-l-tryptophan ((11)C-AMT) is an amino acid PET tracer that is not incorporated into proteins but accumulates in gliomas, mainly because of tumoral transport and metabolism via the immunomodulatory kynurenine pathway. The aim of this study was to evaluate the usefulness of (11)C-AMT PET supplemented by tracer kinetic analysis for distinguishing recurrent gliomas from radiation injury.

METHODS

Twenty-two (11)C-AMT PET scans were obtained in adult patients who presented with a lesion suggestive of tumor recurrence on conventional MRI 1-6 y (mean, 3 y) after resection and postsurgical radiation of a World Health Organization grade II-IV glioma. Lesional standardized uptake values were calculated, as well as lesion-to-contralateral cortex ratios and 2 kinetic (11)C-AMT PET parameters (volume of distribution [VD], characterizing tracer transport, and unidirectional uptake rate [K]). Tumor was differentiated from radiation-injured tissue by histopathology (n = 13) or 1-y clinical and MRI follow-up (n = 9). Accuracy of tumor detection by PET variables was assessed by receiver-operating-characteristic analysis.

RESULTS

All (11)C-AMT PET parameters were higher in tumors (n = 12) than in radiation injury (n = 10) (P ≤ 0.012 in all comparisons). The lesion-to-cortex K-ratio most accurately identified tumor recurrence, with highly significant differences both in the whole group (P < 0.0001) and in lesions with histologic verification (P = 0.006); the area under the receiver-operating-characteristic curve was 0.99. A lesion-to-cortex K-ratio threshold of 1.39 (i.e., a 39% increase) correctly differentiated tumors from radiation injury in all but 1 case (100% sensitivity and 91% specificity). In tumors that were high-grade initially (n = 15), a higher lesion-to-cortex K-ratio threshold completely separated recurrent tumors (all K-ratios ≥ 1.70) from radiation injury (all K-ratios < 1.50) (100% sensitivity and specificity).

CONCLUSION

Kinetic analysis of dynamic (11)C-AMT PET images may accurately differentiate between recurrent World Health Organization grade II-IV infiltrating gliomas and radiation injury. Separation of unidirectional uptake rates from transport can enhance the differentiating accuracy of (11)C-AMT PET. Applying the same approach to other amino acid PET tracers might also improve their ability to differentiate recurrent gliomas from radiation injury.

摘要

目的

评估动态 (11)C-AMT PET 图像的示踪动力学分析在鉴别复发性脑胶质瘤与放射性损伤中的作用。

方法

22 例经 MRI 检查怀疑肿瘤复发的患者,在术后 1-6 年(平均 3 年)接受了手术切除和术后放疗,这些患者的世界卫生组织(WHO)Ⅱ-Ⅳ级脑胶质瘤。计算病变部位标准化摄取值,以及病变与对侧皮质的比值和 2 种动力学(11)C-AMT PET 参数(容积分布[VD],用于描述示踪剂的转运;单向摄取率[K])。通过组织病理学(n=13)或 1 年临床和 MRI 随访(n=9)区分肿瘤与放射性损伤组织。通过受试者工作特征分析评估 PET 变量检测肿瘤的准确性。

结果

所有(11)C-AMT PET 参数在肿瘤(n=12)中均高于放射性损伤(n=10)(所有比较 P≤0.012)。病变与皮质的 K-比最能准确识别肿瘤复发,在整个组中差异有统计学意义(P<0.0001),在有组织学验证的病变中差异也有统计学意义(P=0.006);受试者工作特征曲线下面积为 0.99。病变与皮质的 K-比阈值为 1.39(即增加 39%),可正确区分肿瘤与放射性损伤,除 1 例(100%的敏感性和 91%的特异性)外,其余均为 100%(敏感性和特异性)。在最初为高级别肿瘤(n=15)中,更高的病变与皮质的 K-比阈值完全将复发性肿瘤(所有 K-比均≥1.70)与放射性损伤(所有 K-比均<1.50)区分开来(100%的敏感性和特异性)。

结论

动态(11)C-AMT PET 图像的示踪动力学分析可以准确地区分复发性Ⅱ-Ⅳ级脑胶质瘤和放射性损伤。将单向摄取率与转运分离可以提高(11)C-AMT PET 的鉴别准确性。将相同的方法应用于其他氨基酸 PET 示踪剂也可能提高其区分复发性脑胶质瘤与放射性损伤的能力。

相似文献

引用本文的文献

10
Multimodal neuroimaging of gliomatosis cerebri: a case series of four patients.大脑胶质瘤病的多模态神经影像学:4例患者的病例系列
Acta Radiol Open. 2020 Aug 21;9(8):2058460120942789. doi: 10.1177/2058460120942789. eCollection 2020 Aug.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验