Green Anthony J, Space Brian
Department of Chemistry, University of South Florida, Tampa, Florida 33620-5250, United States.
J Phys Chem B. 2015 Jul 23;119(29):9219-24. doi: 10.1021/jp509647w. Epub 2014 Dec 4.
Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features.
和频振动光谱学(SFVS)是一种二阶光学过程,在偶极近似下具有界面特异性[佩里,A.;内珀特,C.;摩尔,P.;斯佩斯,B.《化学评论》2006年,106卷,1234 - 1258页;里士满,G. L.《化学评论》2002年,102卷,2693 - 2724页;伯恩斯,S. J.;盖斯勒,P. L.;沈,Y. R.《化学物理快报》2011年,516卷,115 - 124页]。在带电界面处,由于静场的存在,实验检测到的信号是增强的二阶贡献和静场诱导的三阶贡献的组合。这种三阶贡献的重要性/相对大小的证据可见于文献[翁,S.;赵,X.;艾森塔尔,K. B.《化学物理快报》1992年,191卷,327 - 335页;赵,X.;翁,S.;艾森塔尔,K. B.《化学物理快报》1993年,202卷,513 - 520页;沈,Y. R.《应用物理B:激光与光学》1999年,68卷,295 - 300页],但构建一种分子层面详细的方法来分别计算二阶和三阶贡献却很困难。最近的工作提出了一种基于分子动力学(MD)的新理论,该理论提供了一种直接手段来计算带电界面处SFVS光谱的三阶贡献[内珀特,C.;斯佩斯,B.《化学物理杂志》2006年,125卷,224706页],并且开发了一种水的超极化率模型作为实际应用的前提条件[内珀特,C.;斯佩斯,B.《计算快报》2007年,3卷,431 - 440页]。在此,这些方法被应用于一个高度抽象/理想化的二氧化硅/水界面,并将结果与熔融石英表面水的实验数据进行比较。结果表明,此类光谱具有一些相当普遍的光谱特征。