Barton Larry L, Fardeau Marie-Laure, Fauque Guy D
Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, USA,
Met Ions Life Sci. 2014;14:237-77. doi: 10.1007/978-94-017-9269-1_10.
Sulfur is an essential element for the synthesis of cysteine, methionine, and other organo-sulfur compounds needed by living organisms. Additionally, some prokaryotes are capable of exploiting oxidation or reduction of inorganic sulfur compounds to energize cellular growth. Several anaerobic genera of Bacteria and Archaea produce hydrogen sulfide (H2S), as a result of using sulfate (SO(4)(2 -) ), elemental sulfur (S(0)), thiosulfate (S₂O(3)(2 -)), and tetrathionate (S(4)O(6)(2 -)) as terminal electron acceptors. Some phototrophic and aerobic sulfur bacteria are capable of using electrons from oxidation of sulfide to support chemolithotrophic growth. For the most part, biosulfur reduction or oxidation requires unique enzymatic activities with metal cofactors participating in electron transfer. This review provides an examination of cytochromes, iron-sulfur proteins, and sirohemes participating in electron movement in diverse groups of sulfate-reducing, sulfur-reducing, and sulfide-oxidizing Bacteria and Archaea.
硫是合成半胱氨酸、甲硫氨酸及其他生物体所需有机硫化合物的必需元素。此外,一些原核生物能够利用无机硫化合物的氧化或还原为细胞生长供能。一些厌氧细菌和古菌属会产生硫化氢(H₂S),这是因为它们将硫酸根(SO₄²⁻)、单质硫(S⁰)、硫代硫酸根(S₂O₃²⁻)和连四硫酸根(S₄O₆²⁻)用作末端电子受体。一些光合硫细菌和好氧硫细菌能够利用硫化物氧化产生的电子来支持化能无机营养生长。在很大程度上,生物硫的还原或氧化需要独特的酶活性,且金属辅因子参与电子传递。本综述探讨了参与不同类别的硫酸盐还原菌、硫还原菌和硫化物氧化菌及古菌中电子转移的细胞色素、铁硫蛋白和 siro 血红素。