Groveman Bradley R, Kraus Allison, Raymond Lynne D, Dolan Michael A, Anson Kelsie J, Dorward David W, Caughey Byron
From the Laboratory of Persistent Viral Diseases and.
the Computational Biology Section, Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892.
J Biol Chem. 2015 Jan 9;290(2):1119-28. doi: 10.1074/jbc.M114.619627. Epub 2014 Nov 21.
The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ∼90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular β-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked β-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant β-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation.
朊病毒蛋白的感染性形式PrP(Sc)的结构仍不清楚。大多数在体外产生的纯重组朊病毒蛋白(PrP)淀粉样蛋白没有传染性,并且缺乏感染性PrP(Sc)的蛋白酶抗性核心程度和溶剂排斥,特别是在约90-160位残基范围内。聚阴离子辅因子可以增强此类纤维的感染性和PrP(Sc)样特征,但这种增强的机制尚不清楚。在考虑PrP(Sc)多聚体的结构模型时,我们发现了一个紧密堆积的障碍,而聚阴离子辅因子可能会克服这一障碍,即101-110位残基中央赖氨酸簇内四个紧密间隔的阳离子赖氨酸之间的静电排斥。例如,在我们的PrP(Sc)平行同序分子间β-折叠模型中,这些赖氨酸不仅会聚集在一级序列的101-110区域内,而且在堆叠的β-链之间的分子间距仅约为4.8 Å。我们现在进行了分子动力学模拟,预测这些赖氨酸残基上的电荷中和将使该区域内更稳定的平行同序堆积成为可能。我们还通过实验表明,用丙氨酸或天冬酰胺取代这些聚集的赖氨酸残基会导致重组PrP淀粉样纤维具有延长的蛋白酶K抗性β-折叠核心和更类似于真正PrP(Sc)的红外光谱。这些发现表明,中央赖氨酸簇处的电荷中和对于PrP淀粉样纤维内N端残基的折叠和紧密堆积至关重要。这种电荷中和可能是阴离子辅因子促进PrP(Sc)形成机制的一个关键方面。