Alexiou Athanasios, Psiha Maria, Vlamos Panayiotis
BiHELab, Department of Informatics, Ionian University, Plateia Tsirigoti 7, 49100, Corfu, Greece,
Adv Exp Med Biol. 2015;822:151-64. doi: 10.1007/978-3-319-08927-0_17.
While Parkinson's disease is a chronic and progressive movement disorder, no one can predict which symptoms will affect an individual patient. At the present time there is no cure for Parkinson's disease but instead a variety of alternative treatments provide relief from the symptoms. Due to these unpromising factors, we propose a new multi-scale ontology-based modeling technology for the accurate diagnosis of Parkinson's disease and its progress monitoring. The proposed model will be used to assess the status of the patient with PD corresponding treatments using a multilayer neural network. The proposed tool also aims to identify new associated physical and biological biomarkers from heterogeneous patients' data. The architecture of this expert system and its implementation in Protégé is presented in this paper.
虽然帕金森病是一种慢性进行性运动障碍,但没有人能预测哪些症状会影响个体患者。目前帕金森病无法治愈,但有多种替代疗法可缓解症状。鉴于这些不利因素,我们提出一种基于多尺度本体的新型建模技术,用于帕金森病的准确诊断及其病情监测。所提出的模型将使用多层神经网络来评估帕金森病患者的病情及相应治疗情况。所提出的工具还旨在从异质患者数据中识别新的相关物理和生物生物标志物。本文介绍了该专家系统的架构及其在Protégé中的实现。