Suppr超能文献

模拟胰岛中依赖ATP敏感性钾通道的兴奋性。

Modeling K,ATP--dependent excitability in pancreatic islets.

作者信息

Silva Jonathan R, Cooper Paige, Nichols Colin G

机构信息

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri; Department of Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Department of Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.

出版信息

Biophys J. 2014 Nov 4;107(9):2016-26. doi: 10.1016/j.bpj.2014.09.037.

Abstract

In pancreatic ?-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic ?-cell excitability reproduces the ?-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca(2+) channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of ?-cell excitability and suggests future experiments that will lead to improved characterization of ?-cell excitability and the control of insulin secretion.

摘要

在胰腺β细胞中,ATP敏感性钾通道(KATP通道)对葡萄糖变化做出反应,以调节细胞兴奋性和胰岛素释放。证实了电活动对KATP活性具有高敏感性,导致KATP功能增强的突变会引发新生儿糖尿病。我们的目的是通过重现基因操作改变KATP电导时实验观察到的兴奋性变化,来定量评估KATP电流对葡萄糖依赖性爆发调节的贡献。最近一个关于单细胞胰腺β细胞兴奋性的详细计算模型再现了β细胞对不同葡萄糖浓度的反应。然而,初步模拟表明该模型低估了KATP活性的重要性,并且无法再现KATP电导依赖性的兴奋性变化。通过改变L型钙通道和钠钾ATP酶对ATP和葡萄糖的依赖性以更好地拟合实验,再现了兴奋性对KATP电导的适当依赖性。由于实验是在胰岛中进行的,其中存在细胞间变异性,我们将该模型从单细胞扩展为包含1000个细胞的三维模型(10×10×10细胞)胰岛。对于每个细胞,主要电流的电导以及细胞间的缝隙连接电导都允许变化。这表明单细胞葡萄糖依赖性行为随后具有高度变异性,但在耦合的胰岛中是一致的。该研究突出了β细胞兴奋性详细模型参数化的重要性,并提出了未来的实验,这些实验将有助于改进对β细胞兴奋性的表征以及胰岛素分泌的控制。

相似文献

1
Modeling K,ATP--dependent excitability in pancreatic islets.
Biophys J. 2014 Nov 4;107(9):2016-26. doi: 10.1016/j.bpj.2014.09.037.
2
Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets.
J Physiol. 1999 Dec 15;521 Pt 3(Pt 3):717-28. doi: 10.1111/j.1469-7793.1999.00717.x.
3
Electrophysiology of islet cells.
Adv Exp Med Biol. 2010;654:115-63. doi: 10.1007/978-90-481-3271-3_7.
4
Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling.
Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E578-85. doi: 10.1152/ajpendo.00054.2005. Epub 2005 Jul 12.
6
Critical role of gap junction coupled KATP channel activity for regulated insulin secretion.
PLoS Biol. 2006 Feb;4(2):e26. doi: 10.1371/journal.pbio.0040026. Epub 2006 Jan 17.
7
Modeling K(ATP) channel gating and its regulation.
Prog Biophys Mol Biol. 2009 Jan;99(1):7-19. doi: 10.1016/j.pbiomolbio.2008.10.002. Epub 2008 Oct 17.
10
Differential effects of propofol and isoflurane on glucose utilization and insulin secretion.
Life Sci. 2011 Jan 3;88(1-2):96-103. doi: 10.1016/j.lfs.2010.10.032. Epub 2010 Nov 4.

引用本文的文献

1
Exploring pancreatic beta-cell subgroups and their connectivity.
Nat Metab. 2024 Nov;6(11):2039-2053. doi: 10.1038/s42255-024-01097-6. Epub 2024 Aug 8.
3
Ca release or Ca entry, that is the question: what governs Ca oscillations in pancreatic β cells?
Am J Physiol Endocrinol Metab. 2023 Jun 1;324(6):E477-E487. doi: 10.1152/ajpendo.00030.2023. Epub 2023 Apr 19.
4
Identification of structures for ion channel kinetic models.
PLoS Comput Biol. 2021 Aug 16;17(8):e1008932. doi: 10.1371/journal.pcbi.1008932. eCollection 2021 Aug.
5
Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication.
PLoS Comput Biol. 2021 May 3;17(5):e1008948. doi: 10.1371/journal.pcbi.1008948. eCollection 2021 May.
6
How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca] Response.
Biophys J. 2019 Dec 3;117(11):2188-2203. doi: 10.1016/j.bpj.2019.10.037. Epub 2019 Nov 5.
7
Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets.
Physiol Rep. 2019 Jun;7(11):e14101. doi: 10.14814/phy2.14101.
8
NMDA receptors mediate leptin signaling and regulate potassium channel trafficking in pancreatic β-cells.
J Biol Chem. 2017 Sep 15;292(37):15512-15524. doi: 10.1074/jbc.M117.802249. Epub 2017 Aug 2.
9
A computationally efficient algorithm for fitting ion channel parameters.
MethodsX. 2016 Nov 16;3:577-588. doi: 10.1016/j.mex.2016.11.001. eCollection 2016.
10
Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise.
PLoS Comput Biol. 2016 Sep 28;12(9):e1005116. doi: 10.1371/journal.pcbi.1005116. eCollection 2016 Sep.

本文引用的文献

1
Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.
J Physiol. 2011 Nov 15;589(Pt 22):5453-66. doi: 10.1113/jphysiol.2011.218909. Epub 2011 Sep 19.
4
Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms.
Am J Physiol Endocrinol Metab. 2010 Oct;299(4):E517-32. doi: 10.1152/ajpendo.00177.2010. Epub 2010 Jul 13.
5
Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model.
J Theor Biol. 2010 Jul 7;265(1):68-77. doi: 10.1016/j.jtbi.2010.04.028. Epub 2010 May 6.
6
7
Accounting for near-normal glucose sensitivity in Kir6.2[AAA] transgenic mice.
Biophys J. 2009 Nov 4;97(9):2409-18. doi: 10.1016/j.bpj.2009.07.060.
9
A model of action potentials and fast Ca2+ dynamics in pancreatic beta-cells.
Biophys J. 2009 Apr 22;96(8):3126-39. doi: 10.1016/j.bpj.2009.01.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验