Lin Ching-Wen, Wang Po-Hsiang, Ismail Wael, Tsai Yu-Wen, El Nayal Ashraf, Yang Chia-Ying, Yang Fu-Chun, Wang Chia-Hsiang, Chiang Yin-Ru
From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and.
the Life Sciences Department, Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama 329, Kingdom of Bahrain.
J Biol Chem. 2015 Jan 9;290(2):1155-69. doi: 10.1074/jbc.M114.603779. Epub 2014 Nov 21.
Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.
放线菌对胆固醇的分解代谢已得到广泛研究。相比之下,革兰氏阴性菌对胆固醇的摄取和分解代谢却知之甚少。在此,我们在亚细胞水平上研究了微生物对胆固醇的分解代谢。(13)C代谢组学分析表明,厌氧生长的反硝化固醇杆菌(一种β-变形菌)采用不依赖加氧酶的途径来降解胆固醇。反硝化固醇杆菌细胞在以胆固醇为生长底物时不产生生物表面活性剂,且表现出较高的细胞表面疏水性。此外,反硝化固醇杆菌不产生用于转化胆固醇的胞外分解酶。因此,反硝化固醇杆菌通过直接黏附来获取胆固醇。胆固醇通过一种假定的类FadL转运系统穿过外膜,该系统由中性固醇诱导。外膜类固醇转运体能够选择性地将各种C27固醇转运到周质中。反硝化固醇杆菌原生质球摄取胆甾-4-烯-3-酮-26-酸的效率明显高于摄取胆固醇的效率。我们将反硝化固醇杆菌的蛋白质分离为四个部分,即外膜、周质、内膜和细胞质,并观察了其中各自的分解代谢反应。我们的数据表明,在周质中,各种周质和外周膜酶将胆固醇转化为胆甾-4-烯-3-酮-26-酸。然后,C27酸性类固醇被转运到细胞质中,在那里发生侧链降解以及随后的甾烷裂解。这项研究揭示了缺氧条件下微生物的胆固醇代谢情况。