Suppr超能文献

抗菌脂肽与膜结合的热力学:亲和力和选择性的起源

Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.

作者信息

Lin Dejun, Grossfield Alan

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.

出版信息

Biophys J. 2014 Oct 21;107(8):1862-1872. doi: 10.1016/j.bpj.2014.08.026.

Abstract

The development of novel antibiotic drugs is one of the most pressing biomedical problems due to the increasing number of antibiotic-resistant pathogens. Antimicrobial peptides and lipopeptides are a promising category of candidates, but the molecular origins of their antimembrane activity is unclear. Here we explore a series of recently developed antimicrobial lipopeptides, using coarse-grained molecular-dynamics simulations and free energy methods to uncover the thermodynamics governing their binding to membranes. Specifically, we quantify C16-KGGK's binding affinity to the two types of membrane by umbrella sampling. We also examined the origin of C16-KGGK's selectivity for bacterial versus mammalian membranes by systematically varying the peptide sequence and salt concentration. Our data showed that the C16 hydrophobic tail is the main contributor to its affinity to lipid membrane, whereas the peptide portion is mainly responsible for its selectivity. Furthermore, the electrostatic interaction between the cationic peptide and anionic bacterial membrane plays a significant role in the selectivity.

摘要

由于对抗生素耐药性病原体数量的不断增加,开发新型抗生素药物是最紧迫的生物医学问题之一。抗菌肽和脂肽是一类很有前景的候选药物,但它们抗膜活性的分子起源尚不清楚。在这里,我们利用粗粒度分子动力学模拟和自由能方法,探索了一系列最近开发的抗菌脂肽,以揭示其与膜结合的热力学机制。具体来说,我们通过伞形抽样量化了C16-KGGK对两种类型膜的结合亲和力。我们还通过系统地改变肽序列和盐浓度,研究了C16-KGGK对细菌膜和哺乳动物膜选择性的起源。我们的数据表明,C16疏水尾部是其对脂质膜亲和力的主要贡献者,而肽部分主要负责其选择性。此外,阳离子肽与阴离子细菌膜之间的静电相互作用在选择性中起重要作用。

相似文献

1
Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.
Biophys J. 2014 Oct 21;107(8):1862-1872. doi: 10.1016/j.bpj.2014.08.026.
2
Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.
Biophys J. 2015 Aug 18;109(4):750-9. doi: 10.1016/j.bpj.2015.07.011.
3
Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics.
Biochim Biophys Acta. 2012 Feb;1818(2):212-8. doi: 10.1016/j.bbamem.2011.07.025. Epub 2011 Jul 28.
4
Simulating the mechanism of antimicrobial lipopeptides with all-atom molecular dynamics.
Biochemistry. 2013 Aug 20;52(33):5604-10. doi: 10.1021/bi400773q. Epub 2013 Aug 9.
5
6
Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.
Biochim Biophys Acta. 2014 Oct;1838(10):2625-34. doi: 10.1016/j.bbamem.2014.06.016. Epub 2014 Jun 28.
7
Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers.
J Membr Biol. 2019 Oct;252(4-5):317-329. doi: 10.1007/s00232-019-00068-3. Epub 2019 May 16.
9
Are the short cationic lipopeptides bacterial membrane disruptors? Structure-Activity Relationship and molecular dynamic evaluation.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):93-99. doi: 10.1016/j.bbamem.2018.08.013. Epub 2018 Aug 25.
10
Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8324-E8332. doi: 10.1073/pnas.1704489114. Epub 2017 Sep 20.

引用本文的文献

4
Surfactants - Compounds for inactivation of SARS-CoV-2 and other enveloped viruses.
Curr Opin Colloid Interface Sci. 2021 Oct;55:101479. doi: 10.1016/j.cocis.2021.101479. Epub 2021 Jun 12.
7
Inserting Small Molecules across Membrane Mixtures: Insight from the Potential of Mean Force.
Biophys J. 2020 Mar 24;118(6):1321-1332. doi: 10.1016/j.bpj.2020.01.039. Epub 2020 Feb 4.
9
Folding a viral peptide in different membrane environments: pathway and sampling analyses.
J Biol Phys. 2018 Jun;44(2):195-209. doi: 10.1007/s10867-018-9490-y. Epub 2018 Apr 11.
10
Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations.
Biophys J. 2017 Jun 20;112(12):2602-2614. doi: 10.1016/j.bpj.2017.05.019.

本文引用的文献

1
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
2
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
Using the Wimley-White Hydrophobicity Scale as a Direct Quantitative Test of Force Fields: The MARTINI Coarse-Grained Model.
J Chem Theory Comput. 2011 Jul 12;7(7):2316-24. doi: 10.1021/ct2002623. Epub 2011 Jun 20.
4
Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining.
J Chem Theory Comput. 2011 Sep 13;7(9):2981-8. doi: 10.1021/ct200291v. Epub 2011 Aug 17.
5
A New Coarse-Grained Force Field for Membrane-Peptide Simulations.
J Chem Theory Comput. 2011 Nov 8;7(11):3793-802. doi: 10.1021/ct200593t. Epub 2011 Oct 3.
6
Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.
Biochim Biophys Acta. 2014 Oct;1838(10):2625-34. doi: 10.1016/j.bbamem.2014.06.016. Epub 2014 Jun 28.
7
Indolicidin binding induces thinning of a lipid bilayer.
Biophys J. 2014 Apr 15;106(8):L29-31. doi: 10.1016/j.bpj.2014.02.031.
8
Unknown unknowns: the challenge of systematic and statistical error in molecular dynamics simulations.
Biophys J. 2014 Apr 15;106(8):1553-4. doi: 10.1016/j.bpj.2014.03.007.
9
Simulating the mechanism of antimicrobial lipopeptides with all-atom molecular dynamics.
Biochemistry. 2013 Aug 20;52(33):5604-10. doi: 10.1021/bi400773q. Epub 2013 Aug 9.
10
Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
Chem Phys Lipids. 2013 Apr;169:95-105. doi: 10.1016/j.chemphyslip.2013.02.001. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验