Xie Luogang, Lin Dongdong, Luo Yin, Li Huiyu, Yang Xinju, Wei Guanghong
State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai, China.
Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China.
Biophys J. 2014 Oct 21;107(8):1930-1938. doi: 10.1016/j.bpj.2014.08.034.
The pathogenesis of Alzheimer's disease (AD) is associated with the aggregation of amyloid-β (Aβ) peptides into toxic aggregates with ?-sheet character. In a previous computational study, we showed that pristine single-walled carbon nanotubes (SWCNTs) can inhibit the formation of β-sheet-rich oligomers in the central hydrophobic core fragment of Aβ (Aβ16-22). However, the poor solubility of SWCNTs in water hinders their use in biomedical applications and nanomedicine. Here, we investigate the influence of hydroxylated SWCNT, a water-soluble SWCNT derivative, on the aggregation of Aβ16-22 peptides using all-atom explicit-water replica exchange molecular dynamics simulations. Our results show that hydroxylated SWCNTs can significantly inhibit β-sheet formation and shift the conformations of Aβ16-22 oligomers from ordered β-sheet-rich structures toward disordered coil aggregates. Detailed analyses of the SWCNT-Aβ interaction reveal that the inhibition of β-sheet formation by hydroxylated SWCNTs mainly results from strong electrostatic interactions between the hydroxyl groups of SWCNTs and the positively charged residue K16 of Aβ16-22 and hydrophobic and aromatic stacking interactions between SWCNTs and F19 and F20. In addition, our atomic force microscopy and thioflavin T fluorescence experiments confirm the inhibitory effect of both pristine and hydroxylated SWCNTs on Aβ16-22 fibrillization, in support of our previous and present replica exchange molecular dynamics simulation results. These results demonstrate that hydroxylated SWCNTs efficiently inhibit the aggregation of Aβ16-22; in addition, they offer molecular insight into the inhibition mechanism, thus providing new clues for the design of therapeutic drugs against amyloidosis.
阿尔茨海默病(AD)的发病机制与淀粉样β(Aβ)肽聚集成具有β折叠特征的有毒聚集体有关。在之前的一项计算研究中,我们表明原始单壁碳纳米管(SWCNTs)可以抑制Aβ(Aβ16 - 22)中央疏水核心片段中富含β折叠的寡聚体的形成。然而,SWCNTs在水中的溶解度较差,这阻碍了它们在生物医学应用和纳米医学中的使用。在这里,我们使用全原子显式水复制交换分子动力学模拟研究了羟基化SWCNT(一种水溶性SWCNT衍生物)对Aβ16 - 22肽聚集的影响。我们的结果表明,羟基化SWCNTs可以显著抑制β折叠的形成,并使Aβ16 - 22寡聚体的构象从有序的富含β折叠的结构转变为无序的卷曲聚集体。对SWCNT - Aβ相互作用的详细分析表明,羟基化SWCNTs对β折叠形成的抑制主要源于SWCNTs的羟基与Aβ16 - 22带正电的残基K16之间的强静电相互作用,以及SWCNTs与F19和F20之间的疏水和芳香堆积相互作用。此外,我们的原子力显微镜和硫黄素T荧光实验证实了原始和羟基化SWCNTs对Aβ16 - 22纤维化的抑制作用,支持了我们之前和现在的复制交换分子动力学模拟结果。这些结果表明,羟基化SWCNTs能有效抑制Aβ16 - 22的聚集;此外,它们还提供了对抑制机制的分子见解,从而为抗淀粉样变性治疗药物的设计提供了新线索。