Suppr超能文献

对红细胞生成素受体在胶束中的跨膜结构域和近膜区域的结构洞察。

Structural insight into the transmembrane domain and the juxtamembrane region of the erythropoietin receptor in micelles.

作者信息

Li Qingxin, Wong Ying Lei, Huang Qiwei, Kang CongBao

机构信息

Institute of Chemical & Engineering Sciences, Technology and Research (A(?)STAR), Singapore.

Experimental Therapeutics Centre, Agency for Science, Technology and Research (A(?)STAR), Singapore.

出版信息

Biophys J. 2014 Nov 18;107(10):2325-36. doi: 10.1016/j.bpj.2014.10.013.

Abstract

Erythropoietin receptor (EpoR) dimerization is an important step in erythrocyte formation. Its transmembrane domain (TMD) and juxtamembrane (JM) region are essential for signal transduction across the membrane. A construct compassing residues S212-P259 and containing the TMD and JM region of the human EpoR was purified and reconstituted in detergent micelles. The solution structure of the construct was determined in dodecylphosphocholine (DPC) micelles by solution NMR spectroscopy. Structural and dynamic studies demonstrated that the TMD and JM region are an ?-helix in DPC micelles, whereas residues S212-D224 at the N-terminus of the construct are not structured. The JM region is a helix that contains a hydrophobic patch formed by conserved hydrophobic residues (L253, I257, and W258). Nuclear Overhauser effect analysis, fluorescence spectroscopy, and paramagnetic relaxation enhancement experiments suggested that the JM region is exposed to the solvent. The structures of the TMD and JM region of the mouse EpoR were similar to those of the human EpoR.

摘要

促红细胞生成素受体(EpoR)二聚化是红细胞形成过程中的重要一步。其跨膜结构域(TMD)和近膜(JM)区域对于跨膜信号转导至关重要。一种包含人EpoR的TMD和JM区域、涵盖残基S212 - P259的构建体被纯化并在去污剂胶束中重构。通过溶液核磁共振光谱法在十二烷基磷酸胆碱(DPC)胶束中确定了该构建体的溶液结构。结构和动力学研究表明,在DPC胶束中TMD和JM区域呈α螺旋,而构建体N端的残基S212 - D224没有形成特定结构。JM区域是一个螺旋,包含由保守疏水残基(L253、I257和W258)形成的疏水斑块。核Overhauser效应分析、荧光光谱和顺磁弛豫增强实验表明JM区域暴露于溶剂中。小鼠EpoR的TMD和JM区域结构与人EpoR的相似。

相似文献

3
Dimerization of the erythropoietin receptor transmembrane domain in micelles.
J Mol Biol. 2007 Feb 16;366(2):517-24. doi: 10.1016/j.jmb.2006.11.035. Epub 2006 Nov 11.
4
Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.
Biochim Biophys Acta. 2014 May;1838(5):1313-21. doi: 10.1016/j.bbamem.2014.01.005. Epub 2014 Jan 16.
6
Structural requirements of the extracellular to transmembrane domain junction for erythropoietin receptor function.
J Biol Chem. 2005 Apr 15;280(15):14844-54. doi: 10.1074/jbc.M411251200. Epub 2005 Jan 18.
8
NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):164-72. doi: 10.1016/j.bbamem.2013.08.021. Epub 2013 Sep 10.
10
Erythropoietin Receptor Structural Domains.
Vitam Horm. 2017;105:1-17. doi: 10.1016/bs.vh.2017.02.005. Epub 2017 Mar 24.

引用本文的文献

1
Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy.
Chembiochem. 2025 Mar 15;26(6):e202400903. doi: 10.1002/cbic.202400903. Epub 2025 Jan 13.
2
3
Orchestration of signaling by structural disorder in class 1 cytokine receptors.
Cell Commun Signal. 2020 Aug 24;18(1):132. doi: 10.1186/s12964-020-00626-6.
4
A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery.
Molecules. 2020 Jun 28;25(13):2974. doi: 10.3390/molecules25132974.
6
New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis.
Haematologica. 2018 Apr;103(4):575-586. doi: 10.3324/haematol.2017.176370. Epub 2017 Dec 21.
7
Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.
Biophys J. 2017 Feb 28;112(4):595-604. doi: 10.1016/j.bpj.2016.12.042.

本文引用的文献

1
Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.
Biochim Biophys Acta. 2014 May;1838(5):1313-21. doi: 10.1016/j.bbamem.2014.01.005. Epub 2014 Jan 16.
2
Structure of the C-terminal region of the Frizzled receptor 1 in detergent micelles.
Molecules. 2013 Jul 22;18(7):8579-90. doi: 10.3390/molecules18078579.
3
Understanding cytokine and growth factor receptor activation mechanisms.
Crit Rev Biochem Mol Biol. 2012 Nov-Dec;47(6):502-30. doi: 10.3109/10409238.2012.729561. Epub 2012 Oct 9.
4
Solution NMR study of the transmembrane domain of single-span membrane proteins: opportunities and strategies.
Curr Protein Pept Sci. 2012 Sep;13(6):585-600. doi: 10.2174/138920312803582979.
5
Solution NMR approaches for establishing specificity of weak heterodimerization of membrane proteins.
J Am Chem Soc. 2011 Dec 21;133(50):20571-80. doi: 10.1021/ja208972h. Epub 2011 Nov 30.
6
Solution NMR study of integral membrane proteins.
Curr Opin Chem Biol. 2011 Aug;15(4):560-9. doi: 10.1016/j.cbpa.2011.05.025.
7
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
Proteins. 2011 Aug;79(8):2557-65. doi: 10.1002/prot.23089. Epub 2011 Jun 9.
8
Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation.
FASEB J. 2011 Jul;25(7):2234-44. doi: 10.1096/fj.10-178673. Epub 2011 Mar 14.
10
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验