Suppr超能文献

五角八面体碳:一种新型二维碳同素异形体。

Pentahexoctite: a new two-dimensional allotrope of carbon.

作者信息

Sharma Babu Ram, Manjanath Aaditya, Singh Abhishek K

机构信息

Materials Research Centre, Indian Institute of Science, Bangalore-560012.

1] Materials Research Centre, Indian Institute of Science, Bangalore-560012 [2] Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012.

出版信息

Sci Rep. 2014 Nov 24;4:7164. doi: 10.1038/srep07164.

Abstract

The ability of carbon to exist in many forms across dimensions has spawned search in exploring newer allotropes consisting of either, different networks of polygons or rings. While research on various 3D phases of carbon has been extensive, 2D allotropes formed from stable rings are yet to be unearthed. Here, we report a new sp(2) hybridized two-dimensional allotrope consisting of continuous 5-6-8 rings of carbon atoms, named as "pentahexoctite". The absence of unstable modes in the phonon spectra ensures the stability of the planar sheet. Furthermore, this sheet has mechanical strength comparable to graphene. Electronically, the sheet is metallic with direction-dependent flat and dispersive bands at the Fermi level ensuring highly anisotropic transport properties. This sheet serves as a precursor for stable 1D nanotubes with chirality-dependent electronic and mechanical properties. With these unique properties, this sheet becomes another exciting addition to the family of robust novel 2D allotropes of carbon.

摘要

碳在多个维度上以多种形式存在的能力促使人们去探索由不同多边形或环网络组成的新型同素异形体。虽然对碳的各种三维相的研究已经很广泛,但由稳定环形成的二维同素异形体尚未被发现。在这里,我们报道了一种新的sp(2)杂化二维同素异形体,它由连续的5-6-8个碳原子环组成,命名为“五六边形八面体碳”。声子谱中不存在不稳定模式确保了平面薄片的稳定性。此外,该薄片的机械强度与石墨烯相当。从电子学角度来看,该薄片是金属性的,在费米能级处具有与方向相关的平坦和色散能带,确保了高度各向异性的输运特性。该薄片可作为具有手性依赖的电子和机械性能的稳定一维纳米管的前驱体。凭借这些独特的性质,该薄片成为坚固的新型二维碳同素异形体家族中的又一令人兴奋的成员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e2b/4241532/f9f9ec917848/srep07164-f1.jpg

相似文献

1
Pentahexoctite: a new two-dimensional allotrope of carbon.
Sci Rep. 2014 Nov 24;4:7164. doi: 10.1038/srep07164.
2
ψ-Graphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries.
J Phys Chem Lett. 2017 Jul 20;8(14):3234-3241. doi: 10.1021/acs.jpclett.7b01364. Epub 2017 Jul 3.
4
K6 carbon: a metallic carbon allotrope in sp3 bonding networks.
J Chem Phys. 2014 Feb 7;140(5):054514. doi: 10.1063/1.4864109.
6
Nano-makisu: highly anisotropic two-dimensional carbon allotropes made by weaving together nanotubes.
Nanoscale. 2020 Jan 7;12(1):347-355. doi: 10.1039/c9nr08069d. Epub 2019 Dec 11.
7
Two dimensional Dirac carbon allotropes from graphene.
Nanoscale. 2014 Jan 21;6(2):1113-8. doi: 10.1039/c3nr04463g.
8
Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.
Nano Lett. 2015 Sep 9;15(9):6182-6. doi: 10.1021/acs.nanolett.5b02512. Epub 2015 Aug 17.
9
Biphenylene network: A nonbenzenoid carbon allotrope.
Science. 2021 May 21;372(6544):852-856. doi: 10.1126/science.abg4509.
10
Identifying Dirac cones in carbon allotropes with square symmetry.
J Chem Phys. 2013 Nov 14;139(18):184701. doi: 10.1063/1.4828861.

引用本文的文献

1
A new metallic π-conjugated carbon sheet used for the cathode of Li-S batteries.
RSC Adv. 2018 Dec 21;9(1):92-98. doi: 10.1039/c8ra07074a. eCollection 2018 Dec 19.
2
Hydrogenated Ψ-graphene as an ultraviolet optomechanical sensor.
RSC Adv. 2020 Jul 10;10(44):26197-26211. doi: 10.1039/d0ra03104f. eCollection 2020 Jul 9.
3
2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra.
Nanomaterials (Basel). 2020 Nov 13;10(11):2252. doi: 10.3390/nano10112252.
4
Structural parameters and electronic properties of 2D carbon allotrope: Graphene with a kagome lattice structure.
Chem Phys Lett. 2020 Dec;760:138006. doi: 10.1016/j.cplett.2020.138006. Epub 2020 Sep 17.
5
Morphology-Controlled Tensile Mechanical Characteristics in Graphene Allotropes.
ACS Omega. 2017 Jul 26;2(7):3977-3988. doi: 10.1021/acsomega.7b00732. eCollection 2017 Jul 31.

本文引用的文献

1
Two-dimensional carbon topological insulators superior to graphene.
Sci Rep. 2013 Dec 18;3:3532. doi: 10.1038/srep03532.
2
Competition for graphene: graphynes with direction-dependent Dirac cones.
Phys Rev Lett. 2012 Feb 24;108(8):086804. doi: 10.1103/PhysRevLett.108.086804.
3
Thermal properties of graphene and nanostructured carbon materials.
Nat Mater. 2011 Jul 22;10(8):569-81. doi: 10.1038/nmat3064.
4
Electronic structures and bonding of graphyne sheet and its BN analog.
J Chem Phys. 2011 May 7;134(17):174701. doi: 10.1063/1.3583476.
5
From point defects in graphene to two-dimensional amorphous carbon.
Phys Rev Lett. 2011 Mar 11;106(10):105505. doi: 10.1103/PhysRevLett.106.105505. Epub 2011 Mar 9.
6
Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions.
ACS Nano. 2011 Apr 26;5(4):2593-600. doi: 10.1021/nn102472s. Epub 2011 Mar 28.
7
Electronic properties of the biphenylene sheet and its one-dimensional derivatives.
ACS Nano. 2010 Aug 24;4(8):4565-70. doi: 10.1021/nn100758h.
8
Architecture of graphdiyne nanoscale films.
Chem Commun (Camb). 2010 May 21;46(19):3256-8. doi: 10.1039/b922733d. Epub 2010 Jan 11.
9
An extended defect in graphene as a metallic wire.
Nat Nanotechnol. 2010 May;5(5):326-9. doi: 10.1038/nnano.2010.53. Epub 2010 Mar 28.
10
Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Science. 2008 Jul 18;321(5887):385-8. doi: 10.1126/science.1157996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验