Suppr超能文献

剪接组装伴侣蛋白RNP-4F相关的U4-/U6-snRNA二级结构的系统发育研究。

A phylogenetic study of splicing assembly chaperone RNP-4F associated U4-/U6-snRNA secondary structure.

作者信息

Vaughn Jack C, Ghosh Sushmita, Chen Jing

机构信息

Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA.

出版信息

Open J Anim Sci. 2013 Nov;3(48):36-48. doi: 10.4236/ojas.2013.34A2005.

Abstract

The -4 gene in encodes nuclear protein RNP-4F. This encoded protein is represented by homologs in other eukaryotic species, where it has been shown to function as an intron splicing assembly factor. Here, RNP-4F is believed to initially bind to a recognition sequence on U6-snRNA, serving as a chaperone to facilitate its association with U4-snRNA by intermolecular hydrogen bonding. RNA conformations are a key factor in spliceosome function, so that elucidation of changing secondary structures for interacting snRNAs is a subject of considerable interest and importance. Among the five snRNAs which participate in removal of spliceosomal introns, there is a growing consensus that U6-snRNA is the most structurally dynamic and may constitute the catalytic core. Previous studies by others have generated potential secondary structures for free U4- and U6-snRNAs, including the Y-shaped U4-/U6-snRNA model. These models were based on study of RNAs from relatively few species, and the popular Y-shaped model remains to be systematically re-examined with reference to the many new sequences generated by recent genomic sequencing projects. We have utilized a comparative phylogenetic approach on 60 diverse eukaryotic species, which resulted in a revised and improved U4-/U6-snRNA secondary structure. This general model is supported by observation of abundant compensatory base mutations in every stem, and incorporates more of the nucleotides into base-paired associations than in previous models, thus being more energetically stable. We have extensively sampled the eukaryotic phylogenetic tree to its deepest roots, but did not find genes potentially encoding either U4- or U6-snRNA in the and data-bases. Our results support the hypothesis that nuclear introns in these most deeply rooted eukaryotes may represent evolutionary intermediates, sharing characteristics of both group II and spliceosomal introns. An unexpected result of this study was discovery of a potential competitive binding site for splicing assembly factor RNP-4F to a 5'-UTR regulatory region within its own premRNA, which may play a role in negative feedback control.

摘要

基因中的 -4 基因编码核蛋白 RNP-4F。这种编码蛋白在其他真核生物物种中有同源物,在那里它已被证明作为一种内含子剪接组装因子发挥作用。在这里,RNP-4F 被认为最初与 U6-snRNA 上的识别序列结合,作为伴侣通过分子间氢键促进其与 U4-snRNA 的结合。RNA 构象是剪接体功能的关键因素,因此阐明相互作用的 snRNA 的二级结构变化是一个备受关注且重要的课题。在参与剪接体内含子去除的五种 snRNA 中,越来越多的共识是 U6-snRNA 在结构上最具动态性,可能构成催化核心。其他人之前的研究已经生成了游离 U4- 和 U6-snRNA 的潜在二级结构,包括 Y 形 U4-/U6-snRNA 模型。这些模型基于对相对较少物种的 RNA 的研究,而流行的 Y 形模型仍有待参照近期基因组测序项目产生的许多新序列进行系统的重新审视。我们对 60 种不同的真核生物物种采用了比较系统发育方法,得出了一个经过修订和改进的 U4-/U6-snRNA 二级结构。这个通用模型得到了每个茎中大量补偿性碱基突变观察结果的支持,并且与之前的模型相比,将更多的核苷酸纳入碱基配对关联中,因此在能量上更稳定。我们广泛采样了真核生物系统发育树直至其最深的根部,但在 和 数据库中未发现可能编码 U4- 或 U6-snRNA 的基因。我们的结果支持这样的假设,即这些最原始的真核生物中的核内含子可能代表进化中间体,兼具 II 类内含子和剪接体内含子的特征。这项研究的一个意外结果是发现了剪接组装因子 RNP-4F 与其自身前体 mRNA 内 5'-UTR 调控区域的潜在竞争结合位点,这可能在负反馈控制中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fab/4237228/8aed51f83efb/nihms592609f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验