Theuser Matthias, Höbartner Claudia, Wahl Markus C, Santos Karine F
Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany;
Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, 37077 Goettingen, Germany.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7798-803. doi: 10.1073/pnas.1524616113. Epub 2016 Jun 27.
The Brr2 RNA helicase disrupts the U4/U6 di-small nuclear RNA-protein complex (di-snRNP) during spliceosome activation via ATP-driven translocation on the U4 snRNA strand. However, it is unclear how bound proteins influence U4/U6 unwinding, which regions of the U4/U6 duplex the helicase actively unwinds, and whether U4/U6 components are released as individual molecules or as subcomplexes. Here, we set up a recombinant Brr2-mediated U4/U6 di-snRNP disruption system, showing that sequential addition of the U4/U6 proteins small nuclear ribonucleoprotein-associated protein 1 (Snu13), pre-mRNA processing factor 31 (Prp31), and Prp3 to U4/U6 di-snRNA leads to a stepwise decrease of Brr2-mediated U4/U6 unwinding, but that unwinding is largely restored by a Brr2 cofactor, the C-terminal Jab1/MPN domain of the Prp8 protein. Brr2-mediated U4/U6 unwinding was strongly inhibited by mutations in U4/U6 di-snRNAs that diminish the ability of U6 snRNA to adopt an alternative conformation but leave the number and kind of U4/U6 base pairs unchanged. Irrespective of the presence of the cofactor, the helicase segregated a Prp3-Prp31-Snu13-U4/U6 RNP into an intact Prp31-Snu13-U4 snRNA particle, free Prp3, and free U6 snRNA. Together, these observations suggest that Brr2 translocates only a limited distance on the U4 snRNA strand and does not actively release RNA-bound proteins. Unwinding is then completed by the partially displaced U6 snRNA adopting an alternative conformation, which leads to dismantling of the Prp3-binding site on U4/U6 di-snRNA but leaves the Prp31- and Snu13-binding sites on U4 snRNA unaffected. In this fashion, Brr2 can activate the spliceosome by stripping U6 snRNA of all precatalytic binding partners, while minimizing logistic requirements for U4/U6 di-snRNP reassembly after splicing.
Brr2 RNA解旋酶在剪接体激活过程中,通过ATP驱动在U4 snRNA链上移位,破坏U4/U6双小核RNA-蛋白质复合物(双snRNP)。然而,尚不清楚结合蛋白如何影响U4/U6解旋,解旋酶主动解旋U4/U6双链体的哪些区域,以及U4/U6组分是以单个分子还是以亚复合物形式释放。在这里,我们建立了一个重组Brr2介导的U4/U6双snRNP破坏系统,结果表明,将U4/U6蛋白小核核糖核蛋白相关蛋白1(Snu13)、前体mRNA加工因子31(Prp31)和Prp3依次添加到U4/U6双snRNA中,会导致Brr2介导的U4/U6解旋逐步减少,但Prp8蛋白的C端Jab1/MPN结构域作为Brr2辅助因子可在很大程度上恢复解旋。U4/U6双snRNA中的突变强烈抑制了Brr2介导的U4/U6解旋,这些突变降低了U6 snRNA采用替代构象的能力,但U4/U6碱基对的数量和种类不变。无论辅助因子是否存在,解旋酶都会将Prp3-Prp31-Snu13-U4/U6 RNP分离成完整的Prp31-Snu13-U4 snRNA颗粒、游离的Prp3和游离的U6 snRNA。总之,这些观察结果表明,Brr2仅在U4 snRNA链上移位有限的距离,并且不会主动释放RNA结合蛋白。然后,部分移位的U6 snRNA通过采用替代构象完成解旋,这导致U4/U6双snRNA上的Prp3结合位点被拆解,但U4 snRNA上的Prp31和Snu13结合位点不受影响。通过这种方式,Brr2可以通过去除U6 snRNA上所有催化前结合伴侣来激活剪接体,同时将剪接后U4/U6双snRNP重新组装的逻辑需求降至最低。