Suppr超能文献

用于锂离子电池的具有增强性能的纳米颗粒沉积双壁TiO₂ - B纳米管的合成

Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries.

作者信息

Qu Jie, Cloud Jacqueline E, Yang Yongan, Ding Jianning, Yuan Ningyi

机构信息

Center for Low-Dimensional Materials, Micro-Nano Devices and System, Changzhou University , Jiangsu Key Laboratory for Solar Cell Materials and Technology, No. 1 Gehu Road, Changzhou, 213164, China.

出版信息

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22199-208. doi: 10.1021/am505893q. Epub 2014 Dec 3.

Abstract

A one-step hydrothermal method, followed by calcination at 300 °C in an argon atmosphere, has been developed to synthesize TiO2-B nanoparticles/double-walled nanotubes (NP/DWNT) and TiO2-B nanoparticles/multiple-walled nanotubes (NP/MWNT). To the best of our knowledge, this is the first synthesis of TiO2-B NP/NT hierarchical structures. Both NP/DWNT and NP/MWNT show high performance as anode materials for lithium-ion batteries, superior to their counterparts of DWNT and MWNT, respectively. Among all the four materials studied herein, NP/DWNT demonstrates the highest discharge-charge capacity, rate capability, and cycling stability. The enhancement due to the NP loading results from the increased surface areas, the improved kinetics, and the decreased transport distance for both electrons and Li ions. The charge capacity at high rates lies in the intercalation pseudocapacitance originating from fast Li-ion transport through the infinite channels in TiO2-B. The superiority of DWNT materials versus MWNT materials is ascribed to the thinner walls, which provide a shorter distance for Li-ion transport through the radial direction.

摘要

已开发出一种一步水热法,随后在氩气气氛中于300°C煅烧,以合成TiO₂-B纳米颗粒/双壁纳米管(NP/DWNT)和TiO₂-B纳米颗粒/多壁纳米管(NP/MWNT)。据我们所知,这是首次合成TiO₂-B NP/NT分级结构。NP/DWNT和NP/MWNT作为锂离子电池的负极材料均表现出高性能,分别优于其对应的DWNT和MWNT。在本文研究的所有四种材料中,NP/DWNT表现出最高的充放电容量、倍率性能和循环稳定性。NP负载带来的性能提升源于表面积的增加、动力学的改善以及电子和锂离子传输距离的缩短。高倍率下的充电容量在于插层赝电容,其源于锂离子通过TiO₂-B中的无限通道的快速传输。DWNT材料相对于MWNT材料的优越性归因于其更薄的壁,这为锂离子通过径向传输提供了更短的距离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验