Suppr超能文献

用于先进可充电锂电池的纳米碳网络。

Nanocarbon networks for advanced rechargeable lithium batteries.

机构信息

Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.

出版信息

Acc Chem Res. 2012 Oct 16;45(10):1759-69. doi: 10.1021/ar300094m. Epub 2012 Sep 6.

Abstract

Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation.

摘要

碳是储能的基本元素之一。在可充电锂电池中,研究人员已经考虑了许多类型的纳米结构碳,如碳纳米粒子、碳纳米管、石墨烯和纳米多孔碳,作为阳极材料,特别是作为构建先进复合电极材料的关键组成部分。纳米碳可以形成高效的三维导电网络,提高了受限于锂离子存储动力学的电极材料的性能。虽然多孔结构保证了锂离子的快速迁移,但纳米碳网络可以作为分散活性材料的有效基质,防止其聚集。纳米碳网络还提供了有效的电子路径,以提供更好的电接触。由于其结构稳定性和灵活性,纳米碳网络可以减轻活性材料在锂离子插入/提取过程中发生的应力和体积变化。通过具有纳米碳网络的分层电极材料的精心设计,研究人员可以提高电极材料的动力学性能和结构稳定性,从而实现最佳的电池容量、循环稳定性和倍率性能。本综述总结了近年来在锂离子电池中纳米碳网络的结构设计、化学合成和电化学性能表征方面的最新进展。在这些系统中,存储主要发生在非碳组件中,而碳则作为导体和结构缓冲。我们强调了包括使用碳纳米管和石墨烯的代表性纳米碳网络。我们讨论了碳在增强各种电极材料在锂离子存储、锂离子和电子传输以及循环过程中的结构稳定性等方面的性能方面的作用。我们特别强调了使用石墨烯来构建用于合金阳极(如 Si 和 Ge)的碳导电网络,以加速电子传输、缓解体积变化和防止活性纳米颗粒的聚集。最后,我们描述了纳米碳网络在下一代可充电锂电池(包括 Li-S、Li-O2 和 Li-有机电池)中的应用潜力,并提供了对这些器件理想纳米碳网络设计的见解。此外,我们还探讨了纳米碳网络如何将可充电锂电池的应用扩展到固定储能和运输等新兴领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验