IEEE Trans Neural Netw Learn Syst. 2014 Dec;25(12):2129-40. doi: 10.1109/TNNLS.2014.2305717.
This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods.
本文研究了在具有时滞的连续时间非线性系统中,将未知方向迟滞模型与自适应神经控制技术融合的问题,该系统不具有严格反馈形式。与之前关于迟滞现象的研究相比,文献中研究的修正 Bouc-Wen 迟滞模型的方向是未知的。为了降低自适应机制中的计算负担,成功地将一种优化的自适应方法应用于控制设计中。基于 Lyapunov-Krasovskii 方法,构建了两种基于神经网络的自适应控制算法,以确保所有系统状态和自适应参数保持有界,并且跟踪误差收敛到原点的可调邻域内。最后,提供了一些数值示例来验证所提出的控制方法的有效性。