Suppr超能文献

具有未知输出非线性的输出受限非线性系统的自适应神经输出反馈控制。

Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1789-802. doi: 10.1109/TNNLS.2015.2420661. Epub 2015 Apr 24.

Abstract

This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the unmeasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For its fusion with the neural networks and the Nussbaum-type function, two key lemmas are established using some extended properties of this model. To avoid the bad system performance caused by the output nonlinearity, a barrier Lyapunov function technique is introduced to guarantee the prescribed constraint of the tracking error. In addition, a robust filtering method is designed to cancel the restriction that all the system states require to be measured. Based on the Lyapunov synthesis, a new neural adaptive controller is constructed to guarantee the prescribed convergence of the tracking error and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system. Simulations are implemented to evaluate the performance of the proposed neural control algorithm in this paper.

摘要

本文针对一类具有迟滞输出机制和不可测量状态的特殊非线性系统的自适应神经网络输出反馈控制问题展开研究。在设计过程中,首先采用修正的 Bouc-Wen 模型来捕捉输出迟滞现象。为了将其与神经网络和 Nussbaum 型函数融合,利用该模型的一些扩展性质建立了两个关键引理。为了避免输出非线性导致的系统性能变差,引入了障碍李雅普诺夫函数技术来保证跟踪误差的规定约束。此外,设计了一种鲁棒滤波方法来消除对所有系统状态都需要测量的限制。基于李雅普诺夫综合,构建了一种新的神经网络自适应控制器,以保证跟踪误差的规定收敛和闭环系统中所有信号的半全局一致有界性。通过仿真评估了本文所提神经网络控制算法的性能。

相似文献

1
Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity.
IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1789-802. doi: 10.1109/TNNLS.2015.2420661. Epub 2015 Apr 24.
2
Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.
IEEE Trans Neural Netw. 2011 Oct;22(10):1599-612. doi: 10.1109/TNN.2011.2165222. Epub 2011 Aug 30.
3
4
Adaptive neural network control of unknown nonlinear affine systems with input deadzone and output constraint.
ISA Trans. 2015 Sep;58:96-104. doi: 10.1016/j.isatra.2015.05.014. Epub 2015 Jul 2.
6
Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.
IEEE Trans Neural Netw Learn Syst. 2014 Dec;25(12):2129-40. doi: 10.1109/TNNLS.2014.2305717.
7
Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function.
IEEE Trans Neural Netw. 2010 Aug;21(8):1339-45. doi: 10.1109/TNN.2010.2047115. Epub 2010 Jul 1.
8
Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems.
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1608-19. doi: 10.1109/TSMCB.2012.2196432. Epub 2012 May 17.
9
Command Filter-Based Adaptive Neural Tracking Controller Design for Uncertain Switched Nonlinear Output-Constrained Systems.
IEEE Trans Cybern. 2017 Oct;47(10):3160-3171. doi: 10.1109/TCYB.2016.2647626. Epub 2017 Jan 12.
10
Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks.
IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2311-22. doi: 10.1109/TNNLS.2014.2378991. Epub 2014 Dec 19.

引用本文的文献

1
Neural Network Direct Control with Online Learning for Shape Memory Alloy Manipulators.
Sensors (Basel). 2019 Jun 6;19(11):2576. doi: 10.3390/s19112576.
2
Nonlinear Hysteresis Modeling of Piezoelectric Actuators Using a Generalized Bouc⁻Wen Model.
Micromachines (Basel). 2019 Mar 12;10(3):183. doi: 10.3390/mi10030183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验