Feng Xin, Yang Zhenzhong, Tang Daichun, Kong Qingyu, Gu Lin, Wang Zhaoxiang, Chen Liquan
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
Phys Chem Chem Phys. 2015 Jan 14;17(2):1257-64. doi: 10.1039/c4cp04087b. Epub 2014 Nov 25.
Li-rich layered Li1+xMnyM1-x-yO2 (or denoted xLi2MnO3·(1 -x)LiMO2, M = Ni, Co, Mn, etc.) are promising cathode materials for high energy-density Li-ion batteries. However, their commercial applications suffer from problems such as a drop in the capacity and discharge voltage during cycling. In this work, the cycling performance of a layered oxide Li1.2Ni0.13Co0.13Mn0.54O2 is improved by integration with spinel LiNi0.5Mn1.5O4 to obtain a layered-spinel composite. Characterization by powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) as well as cyclic voltammetry (CV) indicates that delayed degradation of layered Li2MnO3 and the suppressed growth of LiMn2O4-like spinel are responsible for the performance improvement.
富锂层状Li1+xMnyM1-x-yO2(或表示为xLi2MnO3·(1 -x)LiMO2,M = Ni、Co、Mn等)是用于高能量密度锂离子电池的很有前景的正极材料。然而,它们的商业应用存在诸如循环过程中容量和放电电压下降等问题。在这项工作中,通过与尖晶石LiNi0.5Mn1.5O4复合来改善层状氧化物Li1.2Ni0.13Co0.13Mn0.54O2的循环性能,从而获得层状-尖晶石复合材料。通过粉末X射线衍射(XRD)、高分辨率透射电子显微镜(HRTEM)以及循环伏安法(CV)进行的表征表明,层状Li2MnO3的降解延迟以及类LiMn2O4尖晶石的生长受到抑制是性能改善的原因。