Chae Byeong-Gyu, Park Seong Yong, Song Jay Hyok, Lee Eunha, Jeon Woo Sung
Analytical Engineering Group, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Republic of Korea.
Materials Development Group 1, Samsung SDI, Suwon, Republic of Korea.
Nat Commun. 2021 Jun 21;12(1):3814. doi: 10.1038/s41467-021-24120-w.
To improve the performance of Li-ion batteries (LIBs), it is essential to understand the behaviour of Li ions during charge-discharge cycling. However, the analytical techniques for observing the Li ions are limited. Here, we present the complementary use of scanning transmission electron microscopy and atom probe tomography at identical locations to demonstrate that the evolution of the local Li composition and the corresponding structural changes at the atomic scale cause the capacity degradation of Li(NiCoMn)O (NCM), an LIB cathode. Using these two techniques, we show that a Li concentration gradient evolves during cycling, and the depth of the gradient expands proportionally with the number of cycles. We further suggest that the capacity to accommodate Li ions is determined by the degree of structural disordering. Our findings provide direct evidence of the behaviour of Li ions during cycling and thus the origin of the capacity decay in LIBs.
为了提高锂离子电池(LIBs)的性能,了解锂离子在充放电循环过程中的行为至关重要。然而,用于观察锂离子的分析技术有限。在此,我们展示了在相同位置互补使用扫描透射电子显微镜和原子探针断层扫描技术,以证明局部锂成分的演变以及原子尺度上相应的结构变化会导致LIB正极Li(NiCoMn)O(NCM)的容量衰减。使用这两种技术,我们表明在循环过程中会形成锂浓度梯度,并且该梯度的深度与循环次数成比例扩大。我们进一步提出,容纳锂离子的能力由结构无序程度决定。我们的研究结果为锂离子在循环过程中的行为以及LIBs容量衰减的起源提供了直接证据。