Suppr超能文献

定位于吞噬体膜的伯氏考克斯氏体效应蛋白促进细胞内复制。

Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.

作者信息

Larson Charles L, Beare Paul A, Voth Daniel E, Howe Dale, Cockrell Diane C, Bastidas Robert J, Valdivia Raphael H, Heinzen Robert A

机构信息

Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

出版信息

Infect Immun. 2015 Feb;83(2):661-70. doi: 10.1128/IAI.02763-14. Epub 2014 Nov 24.

Abstract

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.

摘要

细胞内细菌病原体伯氏考克斯体指导吞噬泡(PV)的生物发生,该吞噬泡会获取宿主内溶酶体成分。形成支持伯氏考克斯体复制的吞噬泡需要Dot/Icm 4B型分泌系统(T4BSS),该系统将细菌效应蛋白递送至宿主细胞胞质溶胶中。因此,推测T4BSS效应蛋白的一个子集指导吞噬泡的生物发生。最近,发现定位于吞噬泡的效应蛋白CvpA可促进伯氏考克斯体在细胞内的生长和吞噬泡的扩张。我们预测,伯氏考克斯体的其他效应蛋白定位于吞噬泡膜,并调节促进病原体生长的真核囊泡运输事件。为了鉴定这些液泡效应蛋白,使用生物信息学标准(如存在类似真核生物的卷曲螺旋结构域)编制了一份预测的伯氏考克斯体T4BSS底物清单。腺苷酸环化酶易位试验表明,在感染人THP-1巨噬细胞期间,伯氏考克斯体以Dot/Icm依赖的方式分泌13种蛋白质。当作为荧光标记融合蛋白异位表达时,四种Dot/Icm底物,即伯氏考克斯体液泡蛋白B(CvpB)、CvpC、CvpD和CvpE,标记了吞噬泡膜和LAMP1阳性囊泡。伯氏考克斯体ΔcvpB、ΔcvpC、ΔcvpD和ΔcvpE突变体在细胞内复制和吞噬泡形成方面表现出明显缺陷。ΔcvpD和ΔcvpE突变体的基因互补挽救了细胞内生长和吞噬泡生成,而伯氏考克斯体ΔcvpB和ΔcvpC与野生型细菌在共同的吞噬泡中共存时生长得到挽救。总体而言,这些数据表明伯氏考克斯体编码多种靶向吞噬泡膜的效应蛋白,并有利于病原体在人巨噬细胞中的复制。

相似文献

2
Dependency of Type 4B Secretion on the Chaperone IcmS.
J Bacteriol. 2019 Nov 5;201(23). doi: 10.1128/JB.00431-19. Print 2019 Dec 1.
3
Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages.
mBio. 2011 Sep 1;2(4):e00175-11. doi: 10.1128/mBio.00175-11. Print 2011.
5
Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4770-9. doi: 10.1073/pnas.1309195110. Epub 2013 Nov 18.
6
Identification of Type 4B Secretion System Substrates That Are Conserved among Coxiella burnetii Genomes and Promote Intracellular Growth.
Microbiol Spectr. 2023 Jun 15;11(3):e0069623. doi: 10.1128/spectrum.00696-23. Epub 2023 May 18.
7
Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate.
Infect Immun. 2015 Mar;83(3):1190-8. doi: 10.1128/IAI.02855-14. Epub 2015 Jan 20.
8
The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates.
J Bacteriol. 2011 Apr;193(7):1493-503. doi: 10.1128/JB.01359-10. Epub 2011 Jan 7.
10
A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.
PLoS Pathog. 2014 Jul 31;10(7):e1004286. doi: 10.1371/journal.ppat.1004286. eCollection 2014 Jul.

引用本文的文献

2
Coxiella burnetii manipulates the lysosomal protease cathepsin B to facilitate intracellular success.
Nat Commun. 2025 Apr 24;16(1):3844. doi: 10.1038/s41467-025-59283-3.
3
Identification of a outer membrane porin required for intracellular replication.
Infect Immun. 2025 Apr 8;93(4):e0044824. doi: 10.1128/iai.00448-24. Epub 2025 Mar 12.
5
Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development.
Vaccines (Basel). 2025 Jan 31;13(2):151. doi: 10.3390/vaccines13020151.
6
CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in .
mSphere. 2024 Dec 19;9(12):e0052324. doi: 10.1128/msphere.00523-24. Epub 2024 Nov 19.
7
Coxiella burnetii protein CBU2016 supports CCV expansion.
Pathog Dis. 2024 Feb 7;82. doi: 10.1093/femspd/ftae018.
9
Lysosomal trafficking regulator restricts intracellular growth of by inhibiting the expansion of -containing vacuole and upregulating expression.
Front Cell Infect Microbiol. 2024 Jan 11;13:1336600. doi: 10.3389/fcimb.2023.1336600. eCollection 2023.
10
Pathogenesis: Emphasizing the Role of the Autophagic Pathway.
Arch Razi Inst. 2023 Jun 30;78(3):785-796. doi: 10.22092/ARI.2023.361161.2636. eCollection 2023 Jun.

本文引用的文献

1
A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.
PLoS Pathog. 2014 Jul 31;10(7):e1004286. doi: 10.1371/journal.ppat.1004286. eCollection 2014 Jul.
3
Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening.
PLoS Pathog. 2014 Mar 20;10(3):e1004013. doi: 10.1371/journal.ppat.1004013. eCollection 2014 Mar.
4
The structure of the N-terminal domain of the Legionella protein SidC.
J Struct Biol. 2014 Apr;186(1):188-94. doi: 10.1016/j.jsb.2014.02.003. Epub 2014 Feb 17.
5
AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila.
mBio. 2014 Feb 11;5(1):e01035-13. doi: 10.1128/mBio.01035-13.
6
Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4770-9. doi: 10.1073/pnas.1309195110. Epub 2013 Nov 18.
7
The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism.
J Biol Chem. 2013 Aug 16;288(33):24000-11. doi: 10.1074/jbc.M113.470625. Epub 2013 Jul 2.
9
Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii.
Nat Rev Microbiol. 2013 Aug;11(8):561-73. doi: 10.1038/nrmicro3049. Epub 2013 Jun 24.
10
Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii.
J Bacteriol. 2013 Jul;195(14):3269-76. doi: 10.1128/JB.00180-13. Epub 2013 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验